Skip to main content

OFDM vs SC-OFDM

 

The main difference between OFDM and SC-OFDM is that SC-OFDM transmits the signal using a single carrier, while OFDM uses multiple subcarriers. However, in SC-OFDM, the signal is generated with different sub-bands, but it is transmitted through a single carrier (more technically, through a wideband carrier signal).

Block Diagram of OFDM:

Data → Modulation → Serial-to-Parallel → IFFT → Add CP → Transmit


Received Signal → Remove CP → FFT → Parallel-to-Serial → Demodulation → Data



Block Diagram of SC-OFDM:

Data → Modulation → DFT → IFFT → Add CP → Transmit


Received Signal → Remove CP → FFT → Demodulation → Data 

 

In the case of OFDM, the input modulated data is converted from a serial stream to parallel streams, and different subcarriers are assigned to each chunk. Then, IFFT is applied to these chunks, and a cyclic prefix is added to each one. Each chunk is technically referred to as an OFDM symbol.

Unlike OFDM, SC-OFDM does not perform serial-to-parallel conversion on the modulated input data. Instead, it directly applies DFT (Discrete Fourier Transform) to the data, followed by IFFT. Like OFDM, a cyclic prefix is added before transmission. SC-OFDM uses DFT and IFFT to simulate the multi-frequency behavior of OFDM, but instead of transmitting over multiple subcarriers, the data is transmitted using a single carrier. After IFFT, the data is converted back to the time domain, where it can be transmitted over the channel.

 

MATLAB Code for Comparison of OFDM vs SC-OFDM

 

Output

 

 

Comparison of Steps for OFDM vs SC-OFDM (Baseband)

Here’s a breakdown of the steps involved in both OFDM and SC-OFDM for the baseband signal processing.

1. Input Data (Symbols)

OFDM: The input data is divided into multiple subcarriers. This data is usually modulated using a scheme like QPSK or QAM (e.g., 64-QAM).

SC-OFDM: The input data is also modulated (usually QPSK or QAM), but it's processed in a way that will later simulate single carrier transmission.

2. Mapping to Frequency Domain

OFDM: The symbols are directly mapped to multiple subcarriers. The mapping is done by placing each modulated symbol onto a separate subcarrier, which is orthogonal to the others.

This is typically done using the IFFT (Inverse Fast Fourier Transform).

SC-OFDM: The symbols are processed through DFT (Discrete Fourier Transform) to divide the data into frequency components, but instead of using multiple subcarriers, all frequency components are combined into a single carrier.

3. IFFT (Inverse Fast Fourier Transform)

OFDM: After mapping the symbols to subcarriers, an IFFT is applied to convert the signal from the frequency domain to the time domain. Each subcarrier carries a portion of the data.

SC-OFDM: The DFT is used to convert the data into frequency components, which are then combined using IFFT. The main difference is that the entire signal behaves like a single carrier, even though it’s represented in the frequency domain initially.

4. Cyclic Prefix (CP) Addition

Both OFDM and SC-OFDM: A cyclic prefix (CP) is added to the signal to prevent Inter-Symbol Interference (ISI) caused by multipath fading. The cyclic prefix is a copy of the last few samples of the signal, repeated at the beginning.

5. Baseband Signal

OFDM: The resulting baseband signal after IFFT is spread across multiple subcarriers in the time domain. This allows for parallel data transmission, which is very efficient for high data rates.

SC-OFDM: The baseband signal after IFFT still consists of a single carrier, but it contains frequency components that simulate multiple subcarriers (via the DFT). The signal is similar to traditional single carrier signals but with data distributed over a frequency range.

6. Results (Baseband Signal):

OFDM Baseband: The baseband OFDM signal will show multiple peaks (each corresponding to a subcarrier), and it will look more complex in the time domain due to the presence of multiple subcarriers.

SC-OFDM Baseband: The baseband SC-OFDM signal will show a single peak, representing a single-carrier signal, but its structure is still influenced by multiple frequency components that are DFT-based.
 

Further Reading

  1.  

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Power Spectral Density Calculation Using FFT in MATLAB

📘 Overview 🧮 Steps to calculate the PSD of a signal 🧮 MATLAB Codes 📚 Further Reading Power spectral density (PSD) tells us how the power of a signal is distributed across different frequency components, whereas Fourier Magnitude gives you the amplitude (or strength) of each frequency component in the signal. Steps to calculate the PSD of a signal Firstly, calculate the first Fourier transform (FFT) of a signal Then, calculate the Fourier magnitude of the signal The power spectrum is the square of the Fourier magnitude To calculate power spectrum density (PSD), divide the power spectrum by the total number of samples and the frequency resolution. {Frequency resolution = (sampling frequency / total number of samples)} Sampling frequency (fs): The rate at which the continuous-time signal is sampled (in Hz). ...

Calculation of SNR from FFT bins in MATLAB

📘 Overview 🧮 MATLAB Code for Estimation of SNR from FFT bins of a Noisy Signal 🧮 MATLAB Code for Estimation of Signal-to-Noise Ratio from Power Spectral Density Using FFT and Kaiser Window Periodogram from real signal data 📚 Further Reading   Here, you can find the SNR of a received signal from periodogram / FFT bins using the Kaiser operator. The beta (β) parameter characterizes the Kaiser window, which controls the trade-off between the main lobe width and the side lobe level in the frequency domain. For that you should know the sampling rate of the signal.  The Kaiser window is a type of window function commonly used in signal processing, particularly for designing finite impulse response (FIR) filters and performing spectral analysis. It is a general-purpose window that allows for control over the trade-off between the main lobe width (frequency resolution) and side lobe levels (suppression of spectral leakage). The Kaiser window is defined...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 MATLAB Code s 📚 Further Reading Coherence Bandwidth Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics. Coherence bandwidth is inversely related to the delay spread time (e.g., RMS delay spread). The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel due to multipath. The two are related by the following approximation: Coherence Bandwidth ≈ 1/(delay spread time) Or, Coherence Bandwidth ≈ 1/(root-mean-square delay spread time) (Coherence bandwidth in Hertz) For instance, if the root-mean-square delay spread is 500 ns (i.e., {1/(2*10^6)} seconds), the coherence bandwidth is approximately 2 MHz (1 / 500e-9) in ...

OFDM Symbols and Subcarriers Explained

This article explains how OFDM (Orthogonal Frequency Division Multiplexing) symbols and subcarriers work. It covers modulation, mapping symbols to subcarriers, subcarrier frequency spacing, IFFT synthesis, cyclic prefix, and transmission. Step 1: Modulation First, modulate the input bitstream. For example, with 16-QAM , each group of 4 bits maps to one QAM symbol. Suppose we generate a sequence of QAM symbols: s0, s1, s2, s3, s4, s5, …, s63 Step 2: Mapping Symbols to Subcarriers Assume N sub = 8 subcarriers. Each OFDM symbol in the frequency domain contains 8 QAM symbols (one per subcarrier): Mapping (example) OFDM symbol 1 → s0, s1, s2, s3, s4, s5, s6, s7 OFDM symbol 2 → s8, s9, s10, s11, s12, s13, s14, s15 … OFDM sym...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for i...

Online Channel Impulse Response Simulator

  Fundamental Theory of Channel Impulse Response The fundamental theory behind the channel impulse response in wireless communication often involves complex exponential components such as: \( h(t) = \sum_{i=1}^{L} a_i \cdot \delta(t - \tau_i) \cdot e^{j\theta_i} \) Where: \( a_i \) is the amplitude of the \( i^{th} \) path \( \tau_i \) is the delay of the \( i^{th} \) path \( \theta_i \) is the phase shift (often due to Doppler effect, reflection, etc.) \( e^{j\theta_i} \) introduces a phase rotation (complex exponential) The convolution \( x(t) * h(t) \) gives the received signal So, instead of representing the channel with only real-valued amplitudes, each path can be more accurately modeled using a complex gain : \( h[n] = a_i \cdot e^{j\theta_i} \) 1. Simple Channel Impulse Response Simulator  (Here you can input only a unit impulse signal) Input Signal (Unit Impu...