Skip to main content

OFDM vs SC-OFDM

 

The main difference between OFDM and SC-OFDM is that SC-OFDM transmits the signal using a single carrier, while OFDM uses multiple subcarriers. However, in SC-OFDM, the signal is generated with different sub-bands, but it is transmitted through a single carrier (more technically, through a wideband carrier signal).

Block Diagram of OFDM:

Data → Modulation → Serial-to-Parallel → IFFT → Add CP → Transmit


Received Signal → Remove CP → FFT → Parallel-to-Serial → Demodulation → Data



Block Diagram of SC-OFDM:

Data → Modulation → DFT → IFFT → Add CP → Transmit


Received Signal → Remove CP → FFT → Demodulation → Data 

 

In the case of OFDM, the input modulated data is converted from a serial stream to parallel streams, and different subcarriers are assigned to each chunk. Then, IFFT is applied to these chunks, and a cyclic prefix is added to each one. Each chunk is technically referred to as an OFDM symbol.

Unlike OFDM, SC-OFDM does not perform serial-to-parallel conversion on the modulated input data. Instead, it directly applies DFT (Discrete Fourier Transform) to the data, followed by IFFT. Like OFDM, a cyclic prefix is added before transmission. SC-OFDM uses DFT and IFFT to simulate the multi-frequency behavior of OFDM, but instead of transmitting over multiple subcarriers, the data is transmitted using a single carrier. After IFFT, the data is converted back to the time domain, where it can be transmitted over the channel.

 

MATLAB Code for Comparison of OFDM vs SC-OFDM

 

Output

 

 

Comparison of Steps for OFDM vs SC-OFDM (Baseband)

Here’s a breakdown of the steps involved in both OFDM and SC-OFDM for the baseband signal processing.

1. Input Data (Symbols)

OFDM: The input data is divided into multiple subcarriers. This data is usually modulated using a scheme like QPSK or QAM (e.g., 64-QAM).

SC-OFDM: The input data is also modulated (usually QPSK or QAM), but it's processed in a way that will later simulate single carrier transmission.

2. Mapping to Frequency Domain

OFDM: The symbols are directly mapped to multiple subcarriers. The mapping is done by placing each modulated symbol onto a separate subcarrier, which is orthogonal to the others.

This is typically done using the IFFT (Inverse Fast Fourier Transform).

SC-OFDM: The symbols are processed through DFT (Discrete Fourier Transform) to divide the data into frequency components, but instead of using multiple subcarriers, all frequency components are combined into a single carrier.

3. IFFT (Inverse Fast Fourier Transform)

OFDM: After mapping the symbols to subcarriers, an IFFT is applied to convert the signal from the frequency domain to the time domain. Each subcarrier carries a portion of the data.

SC-OFDM: The DFT is used to convert the data into frequency components, which are then combined using IFFT. The main difference is that the entire signal behaves like a single carrier, even though it’s represented in the frequency domain initially.

4. Cyclic Prefix (CP) Addition

Both OFDM and SC-OFDM: A cyclic prefix (CP) is added to the signal to prevent Inter-Symbol Interference (ISI) caused by multipath fading. The cyclic prefix is a copy of the last few samples of the signal, repeated at the beginning.

5. Baseband Signal

OFDM: The resulting baseband signal after IFFT is spread across multiple subcarriers in the time domain. This allows for parallel data transmission, which is very efficient for high data rates.

SC-OFDM: The baseband signal after IFFT still consists of a single carrier, but it contains frequency components that simulate multiple subcarriers (via the DFT). The signal is similar to traditional single carrier signals but with data distributed over a frequency range.

6. Results (Baseband Signal):

OFDM Baseband: The baseband OFDM signal will show multiple peaks (each corresponding to a subcarrier), and it will look more complex in the time domain due to the presence of multiple subcarriers.

SC-OFDM Baseband: The baseband SC-OFDM signal will show a single peak, representing a single-carrier signal, but its structure is still influenced by multiple frequency components that are DFT-based.
 

Further Reading

  1.  

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...

Antenna Gain-Combining Methods - EGC, MRC, SC, and RMSGC

📘 Overview 🧮 Equal gain combining (EGC) 🧮 Maximum ratio combining (MRC) 🧮 Selective combining (SC) 🧮 Root mean square gain combining (RMSGC) 🧮 Zero-Forcing (ZF) Combining 🧮 MATLAB Code 📚 Further Reading  There are different antenna gain-combining methods. They are as follows. 1. Equal gain combining (EGC) 2. Maximum ratio combining (MRC) 3. Selective combining (SC) 4. Root mean square gain combining (RMSGC) 5. Zero-Forcing (ZF) Combining  1. Equal gain combining method Equal Gain Combining (EGC) is a diversity combining technique in which the receiver aligns the phase of the received signals from multiple antennas (or channels) but gives them equal amplitude weight before summing. This means each received signal is phase-corrected to be coherent with others, but no scaling is applied based on signal strength or channel quality (unlike MRC). Mathematically, for received signa...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

BER performance of QPSK with BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc

📘 Overview 📚 QPSK vs BPSK and QAM: A Comparison of Modulation Schemes in Wireless Communication 📚 Real-World Example 🧮 MATLAB Code 📚 Further Reading   QPSK provides twice the data rate compared to BPSK. However, the bit error rate (BER) is approximately the same as BPSK at low SNR values when gray coding is used. On the other hand, QPSK exhibits similar spectral efficiency to 4-QAM and 16-QAM under low SNR conditions. In very noisy channels, QPSK can sometimes achieve better spectral efficiency than 4-QAM or 16-QAM. In practical wireless communication scenarios, QPSK is commonly used along with QAM techniques, especially where adaptive modulation is applied. Modulation Bits/Symbol Points in Constellation Usage Notes BPSK 1 2 Very robust, used in weak signals QPSK 2 4 Balanced speed & reliability 4-QAM ...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for i...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR va...