Skip to main content

Optimal Precoding for Millimeter wave Massive MIMO Systems


 

Optimal Precoding for Millimeter wave Massive MIMO Systems

In case of MIMO system we deploy multiple transmitter antennas at receiver side and multiple receiver antennas at receiver side. MIMO technology was introduced to support multiple simultaneous data streams between transmitter and receiver to multiply the capacity of a system. But there is also interference between multiple data streams. Precoding technique minimizes the interference between multiple data streams. 



What Exactly Precoding Technique is

We all are familiar with the channel matrix of an MIMO system, that looks like, =


\      R1     R2     R3     R4

T1  h11    h12     h13   h14

T2  h21    h22     h23   h24

T3  h31    h32     h33   h34

T4  h41    h42     h43   h44


Here, in the above figure channel matrix, is shown. In channel matrix it shown different gains between different antennas. Now, we see in the above matrix for example, h11 represents the channel gain between transmitter antenna, T1 and receiver antenna, R1 and h11 also means connection between the antennas as well. R1 also receives the signals from T2, T3, and T4 antennas too. So, there is some kind of interface between multiple data streams when we process the signal at receiver side. Here, precoding help us to reduce interference between multiple data streams. 



Optimal Precoding in MIMO

Typically, received signal at receiver side is represented as,

y = Hx + n       .....(i)

Where, is channel matrix gain

y = Received signal vector 

= Transmitted signal vector 

= Additive white Gaussian noise

Here, in the above equation you can image channel matrix, as same as above channel matrix where we've shown channel gains between TX side antennas T1, T2, T3, T4, and receiver side antennas, R1, R2, R3, R4, respectively. We've also talked about interference with T1's signal at R1 antenna due to transmission from T2, T2, and T3. 

Now, let imagine your channel matrix looks like that, =


\       R1     R2     R3     R4

T1   h11     0        0         0

T2     0     h22      0        0

T3     0       0      h33      0

T4     0       0       0       h44


Now in equation (i), if you the put the above channel matrix value then you see there is no interference with T1' signal with T2, T3, and T4's transmission at receiver R1. 

Similar approach is performed for optimal precoding technique we channel matrix is decomposed in to two unitary matrix U, V, and one diagonal eigen value matrix, Σ. We've already talked about "Singular Value Decomposition in MIMO Channel" in a separate article. 

There is matrix, Σwe operate row and column matrix in a such way that Σ becomes diagonal matrix where elements are in descending order. We do that by operating multiple operations in matrix as shown in the above mentioned article.

Generally, matrix is decomposed into, H = UΣVH

As and are unitary matrix so, multiplication of those matrix with its hermitian matrix itself are identity matrix. Alternatively, UUH = VVH = I



Signal Processing at Receiver Side for Optimal Precoding

During transmission we multiply original message signal vector with unitary matrix, V. So, now transmitted signal vector becomes, Vx. On the side at receiver side, received signal vector is multiplied with vector UH. So, as per above equation (i), received signal vector at receiver side as follows

y = UH (UΣVH) Vx + n

y= IΣIx + n

y = Σx +n 

Now, you see Σ is a diagonal matrix and signal vector, is multiplied with that diagonal matrix. So, you can observe there the simultaneous data streams between MIMO transmitter and receiver antennas without interference among them. Now we further do optimal power allocation to each antennas to maximize sum-rate or overall throughput as shown in a separate article. There is the URL link above.


# mimo beamforming

Why OFDM precoding modulation used in uplink?

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the s...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK and QAM orders to be tested psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk_order-1], 1, num_symb...

Theoretical BER vs SNR for BPSK

Let's simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel.  Key Points Fig 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗] BPSK Modulation: Transmits one of two signals: +√Eb ​ or -√Eb , where Eb​ is the energy per bit. These signals represent binary 0 and 1 . AWGN Channel: The channel adds Gaussian noise with zero mean and variance N0/2 (where N0 ​ is the noise power spectral density). Receiver Decision: The receiver decides if the received signal is closer to +√Eb​ (for bit 0) or -√Eb​ (for bit 1) . Bit Error Rate (BER) The probability of error (BER) for BPSK is given by a function called the Q-function. The Q-function Q(x) measures the tail probability of the normal distribution, i.e., the probability that a Gaussian random variable exceeds a certain value x.  Formula for BER: BER=Q(...

Constellation Diagrams of ASK, PSK, and FSK

Modulation ASK, FSK & PSK Constellation BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  This article will primarily discuss constellation diagrams, as well as what constellation diagrams tell us and the significance of constellation diagrams. Constellation diagrams can often demonstrate how the amplitude and phase of signals or symbols differ. These two characteristics lessen the interference between t...

Theoretical and simulated BER vs. SNR for ASK, FSK, and PSK

  BER vs. SNR denotes how many bits in error are received in a communication process for a particular Signal-to-noise (SNR) ratio. In most cases, SNR is measured in decibel (dB). For a typical communication system, a signal is often affected by two types of noises 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading In the case of additive white Gaussian noise (AWGN), random magnitude is added to the transmitted signal. On the other hand, Rayleigh fading (due to multipath) attenuates the different frequency components of a signal differently. A good signal-to-noise ratio tries to mitigate the effect of noise.  Calculate BER for Binary ASK Modulation The theoretical BER for binary ASK (BASK) in an AWGN channel is given by: BER  = (1/2) * erfc(0.5 * sqrt(SNR_ask));   Enter SNR (dB): Calculate BER BER vs. SNR curves for ASK, FSK, and PSK Calculate BER for Binary FSK Modulation The theoretical BER for binary FSK (BFSK) in a...

OFDM in MATLAB

  MATLAB Script % The code is written by SalimWireless.Com 1. Initialization clc; clear all; close all; 2. Generate Random Bits % Generate random bits numBits = 100; bits = randi([0, 1], 1, numBits); 3. Define Parameters % Define parameters numSubcarriers = 4; % Number of subcarriers numPilotSymbols = 3; % Number of pilot symbols cpLength = ceil(numBits / 4); % Length of cyclic prefix (one-fourth of the data length) 4. Add Cyclic Prefix % Add cyclic prefix dataWithCP = [bits(end - cpLength + 1:end), bits]; 5. Insert Pilot Symbols % Insert pilot symbols pilotSymbols = ones(1, numPilotSymbols); % Example pilot symbols (could be any pattern) dataWithPilots = [pilotSymbols, dataWithCP];   6. Perform OFDM Modulation (IFFT) % Perform OFDM modulation (IFFT) dataMatrix = reshape(dataWithPilots, numSubcarriers, []); ofdmSignal = ifft(dataMatrix, numSubcarriers); ofdmSignal = reshape(ofdmSignal, 1, []); 7. Display the Generated Data % Display the generated data disp("Original Bits:"); ...

Why is Time-bandwidth Product Important?

Time-Bandwidth Product (TBP) The time-bandwidth product (TBP) is defined as: TBP = Δ f ⋅ Δ t Δf (Bandwidth) : The frequency bandwidth of the signal, representing the range of frequencies over which the signal is spread. Δt (Time duration) : The duration for which the signal is significant, i.e., the time interval during which the signal is non-zero. The TBP is a measure of the "spread" of the signal in both time and frequency domains. A higher TBP means the signal is both spread over a larger time period and occupies a wider frequency range.     To calculate the period of a signal with finite bandwidth, Heisenberg’s uncertainty principle plays a vital role where the time-bandwidth product indicates the processing gain of the signal. We apply spread spectrum techniques in wireless communication for various reasons, such as interference resili...