Skip to main content

Optimal Precoding for Millimeter wave Massive MIMO Systems


 

Optimal Precoding for Millimeter wave Massive MIMO Systems

In case of MIMO system we deploy multiple transmitter antennas at receiver side and multiple receiver antennas at receiver side. MIMO technology was introduced to support multiple simultaneous data streams between transmitter and receiver to multiply the capacity of a system. But there is also interference between multiple data streams. Precoding technique minimizes the interference between multiple data streams. 



What Exactly Precoding Technique is

We all are familiar with the channel matrix of an MIMO system, that looks like, =


\      R1     R2     R3     R4

T1  h11    h12     h13   h14

T2  h21    h22     h23   h24

T3  h31    h32     h33   h34

T4  h41    h42     h43   h44


Here, in the above figure channel matrix, is shown. In channel matrix it shown different gains between different antennas. Now, we see in the above matrix for example, h11 represents the channel gain between transmitter antenna, T1 and receiver antenna, R1 and h11 also means connection between the antennas as well. R1 also receives the signals from T2, T3, and T4 antennas too. So, there is some kind of interface between multiple data streams when we process the signal at receiver side. Here, precoding help us to reduce interference between multiple data streams. 



Optimal Precoding in MIMO

Typically, received signal at receiver side is represented as,

y = Hx + n       .....(i)

Where, is channel matrix gain

y = Received signal vector 

= Transmitted signal vector 

= Additive white Gaussian noise

Here, in the above equation you can image channel matrix, as same as above channel matrix where we've shown channel gains between TX side antennas T1, T2, T3, T4, and receiver side antennas, R1, R2, R3, R4, respectively. We've also talked about interference with T1's signal at R1 antenna due to transmission from T2, T2, and T3. 

Now, let imagine your channel matrix looks like that, =


\       R1     R2     R3     R4

T1   h11     0        0         0

T2     0     h22      0        0

T3     0       0      h33      0

T4     0       0       0       h44


Now in equation (i), if you the put the above channel matrix value then you see there is no interference with T1' signal with T2, T3, and T4's transmission at receiver R1. 

Similar approach is performed for optimal precoding technique we channel matrix is decomposed in to two unitary matrix U, V, and one diagonal eigen value matrix, Î£. We've already talked about "Singular Value Decomposition in MIMO Channel" in a separate article. 

There is matrix, Î£we operate row and column matrix in a such way that Î£ becomes diagonal matrix where elements are in descending order. We do that by operating multiple operations in matrix as shown in the above mentioned article.

Generally, matrix is decomposed into, H = UΣVH

As and are unitary matrix so, multiplication of those matrix with its hermitian matrix itself are identity matrix. Alternatively, UUH = VVH = I



Signal Processing at Receiver Side for Optimal Precoding

During transmission we multiply original message signal vector with unitary matrix, V. So, now transmitted signal vector becomes, Vx. On the side at receiver side, received signal vector is multiplied with vector UH. So, as per above equation (i), received signal vector at receiver side as follows

y = UH (UΣVH) Vx + n

y= IΣIx + n

y = Î£x +n 

Now, you see Î£ is a diagonal matrix and signal vector, is multiplied with that diagonal matrix. So, you can observe there the simultaneous data streams between MIMO transmitter and receiver antennas without interference among them. Now we further do optimal power allocation to each antennas to maximize sum-rate or overall throughput as shown in a separate article. There is the URL link above.


# mimo beamforming

Why OFDM precoding modulation used in uplink?

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Channel Impulse Response (CIR)

📘 Overview & Theory 📘 How CIR Affects the Signal 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading What is the Channel Impulse Response (CIR)? The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal. It describes the behavior of a communication channel in response to an impulse signal. In signal processing, an impulse signal has zero amplitude at all other times and amplitude ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this. Fig: Dirac Delta Function The result of this calculation is that all frequencies are responded to equally by δ(t) . This is crucial since we never know which frequenci...

Theoretical BER vs SNR for binary ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Codes 📚 Further Reading Theoretical BER vs SNR for Amplitude Shift Keying (ASK) The theoretical Bit Error Rate (BER) for binary ASK depends on how binary bits are mapped to signal amplitudes. For typical cases: If bits are mapped to 1 and -1, the BER is: BER = Q(√(2 × SNR)) If bits are mapped to 0 and 1, the BER becomes: BER = Q(√(SNR / 2)) Where: Q(x) is the Q-function: Q(x) = 0.5 × erfc(x / √2) SNR : Signal-to-Noise Ratio N₀ : Noise Power Spectral Density Understanding the Q-Function and BER for ASK Bit '0' transmits noise only Bit '1' transmits signal (1 + noise) Receiver decision threshold is 0.5 BER is given by: P b = Q(0.5 / σ) , where σ = √(N₀ / 2) Using SNR = (0.5)² / N₀, we get: BER = Q(√(SNR / 2)) Theoretical BER vs ...

Power Spectral Density Calculation Using FFT in MATLAB

📘 Overview 🧮 Steps to calculate the PSD of a signal 🧮 MATLAB Codes 📚 Further Reading Power spectral density (PSD) tells us how the power of a signal is distributed across different frequency components, whereas Fourier Magnitude gives you the amplitude (or strength) of each frequency component in the signal. Steps to calculate the PSD of a signal Firstly, calculate the first Fourier transform (FFT) of a signal Then, calculate the Fourier magnitude of the signal The power spectrum is the square of the Fourier magnitude To calculate power spectrum density (PSD), divide the power spectrum by the total number of samples and the frequency resolution. {Frequency resolution = (sampling frequency / total number of samples)} Sampling frequency (fs): The rate at which the continuous-time signal is sampled (in Hz). ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

What is - 3dB Frequency Response? Applications ...

📘 Overview & Theory 📘 Application of -3dB Frequency Response 🧮 MATLAB Codes 🧮 Online Digital Filter Simulator 📚 Further Reading Filters What is -3dB Frequency Response?   Remember, for most passband filters, the magnitude response typically remains close to the peak value within the passband, varying by no more than 3 dB. This is a standard characteristic in filter design. The term '-3dB frequency response' indicates that power has decreased to 50% of its maximum or that signal voltage has reduced to 0.707 of its peak value. Specifically, The -3dB comes from either 10 Log (0.5) {in the case of power} or 20 Log (0.707) {in the case of amplitude} . Viewing the signal in the frequency domain is helpful. In electronic amplifiers, the -3 dB limit is commonly used to define the passband. It shows whether the signal remains approximately flat across the passband. For example, in pulse shapi...