Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks Lab 🚀

Optimal Precoding for Millimeter wave Massive MIMO Systems


 

Optimal Precoding for Millimeter wave Massive MIMO Systems

In case of MIMO system we deploy multiple transmitter antennas at receiver side and multiple receiver antennas at receiver side. MIMO technology was introduced to support multiple simultaneous data streams between transmitter and receiver to multiply the capacity of a system. But there is also interference between multiple data streams. Precoding technique minimizes the interference between multiple data streams. 



What Exactly Precoding Technique is

We all are familiar with the channel matrix of an MIMO system, that looks like, =


\      R1     R2     R3     R4

T1  h11    h12     h13   h14

T2  h21    h22     h23   h24

T3  h31    h32     h33   h34

T4  h41    h42     h43   h44


Here, in the above figure channel matrix, is shown. In channel matrix it shown different gains between different antennas. Now, we see in the above matrix for example, h11 represents the channel gain between transmitter antenna, T1 and receiver antenna, R1 and h11 also means connection between the antennas as well. R1 also receives the signals from T2, T3, and T4 antennas too. So, there is some kind of interface between multiple data streams when we process the signal at receiver side. Here, precoding help us to reduce interference between multiple data streams. 



Optimal Precoding in MIMO

Typically, received signal at receiver side is represented as,

y = Hx + n       .....(i)

Where, is channel matrix gain

y = Received signal vector 

= Transmitted signal vector 

= Additive white Gaussian noise

Here, in the above equation you can image channel matrix, as same as above channel matrix where we've shown channel gains between TX side antennas T1, T2, T3, T4, and receiver side antennas, R1, R2, R3, R4, respectively. We've also talked about interference with T1's signal at R1 antenna due to transmission from T2, T2, and T3. 

Now, let imagine your channel matrix looks like that, =


\       R1     R2     R3     R4

T1   h11     0        0         0

T2     0     h22      0        0

T3     0       0      h33      0

T4     0       0       0       h44


Now in equation (i), if you the put the above channel matrix value then you see there is no interference with T1' signal with T2, T3, and T4's transmission at receiver R1. 

Similar approach is performed for optimal precoding technique we channel matrix is decomposed in to two unitary matrix U, V, and one diagonal eigen value matrix, Î£. We've already talked about "Singular Value Decomposition in MIMO Channel" in a separate article. 

There is matrix, Î£we operate row and column matrix in a such way that Î£ becomes diagonal matrix where elements are in descending order. We do that by operating multiple operations in matrix as shown in the above mentioned article.

Generally, matrix is decomposed into, H = UΣVH

As and are unitary matrix so, multiplication of those matrix with its hermitian matrix itself are identity matrix. Alternatively, UUH = VVH = I



Signal Processing at Receiver Side for Optimal Precoding

During transmission we multiply original message signal vector with unitary matrix, V. So, now transmitted signal vector becomes, Vx. On the side at receiver side, received signal vector is multiplied with vector UH. So, as per above equation (i), received signal vector at receiver side as follows

y = UH (UΣVH) Vx + n

y= IΣIx + n

y = Î£x +n 

Now, you see Î£ is a diagonal matrix and signal vector, is multiplied with that diagonal matrix. So, you can observe there the simultaneous data streams between MIMO transmitter and receiver antennas without interference among them. Now we further do optimal power allocation to each antennas to maximize sum-rate or overall throughput as shown in a separate article. There is the URL link above.


# mimo beamforming

Why OFDM precoding modulation used in uplink?

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Rayleigh vs Rician Fading

  In Rayleigh fading, the channel coefficients tend to have a Rayleigh distribution, which is characterized by a random phase and magnitude with an exponential distribution. This means the magnitude of the channel coefficient follows an exponential distribution with a mean of 1. In Rician fading, there is a dominant line-of-sight component in addition to the scattered components. The channel coefficients in Rician fading can indeed tend towards 1, especially when the line-of-sight component is strong. When the line-of-sight component dominates, the Rician fading channel behaves more deterministically, and the channel coefficients may tend towards the value of the line-of-sight component, which could be close to 1.   MATLAB Script clc; clear all; close all; % Define parameters numSamples = 1000; % Number of samples K_factor = 5; % K-factor for Rician fading SNR_dB = 20; % Signal-to-noise ratio (in dB) % Generate complex Gaussian random variable for Rayleigh fading channel h_rayleigh = (

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK orders to be tested psk_orders = [2, 4, 8, 16, 32]; % QAM orders to be tested qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk_order-1]

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK FSK PSK Baud Rate (Hz):

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the signal power i

Constellation Diagrams of ASK, PSK, and FSK

Modulation ASK, FSK & PSK Constellation BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  This article will primarily discuss constellation diagrams, as well as what constellation diagrams tell us and the significance of constellation diagrams. Constellation diagrams can often demonstrate how the amplitude and phase of signals or symbols differ. These two characteristics lessen the interference between t

Simulation of ASK, FSK, and PSK using MATLAB Simulink

ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying both modulated and unmodulated signals at the same time. The result section shows that binary '1' is modulated by a certain sine wave amplitude of 1 Volt, and binary '0' is modulated by zero amplitude. Simulation of Frequency Shift Keying (FSK) using MATLAB Simulink   Result The diagram above shows t

Channel Impulse Response (CIR)

Channel Impulse Response (CIR) Wireless Signal Processing CIR, Doppler Shift & Gaussian Random Variable  The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal.   What is the Channel Impulse Response (CIR) ? It describes the behavior of a communication channel in response to an impulse signal. In signal processing,  an impulse signal has zero amplitude at all other times and amplitude  ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this.  ...(i) δ( t) now has a very intriguing characteristic. The answer is 1 when the Fourier Transform of  δ( t) is calculated. As a result, all frequencies are responded to equally by  δ (t). This is crucial since we never know which frequencies a system will affect when examining an unidentified one. Since it can test the system for all freq

How to use MATLAB Simulink

  MATLAB Simulink is a popular add-on of MATLAB. Here, you can use different blocks like modulator, demodulator, AWGN channel, etc. And you can do experiments on your own.       Steps Go to the 'Simulink' tab at the top navbar of MATLAB. If not found, click on the add-on tab, search 'Simulink,' and then click on it to add. Once you installed the simulation, click the 'new' tap at the top left corner. Then, search the required blocks in the 'Simulink library.' Then, drag it to the editor space. You can double-click on the blocks to see the input parameters Then, connect the blocks by dragging a line from one block's output terminal to another block's input. If the connection is complete, click the 'run' tab in the middle of the top navbar.   After clicking on the run button, your Simulink is ready. Then double-click on any block to see the output   The following block diagram is an example of the MATLAB simulation of 'QPSK'
document.onmouseup=new Function ("return false"); }