Skip to main content

Structure of an OFDM Packet


 

What does an OFDM signal look like?

An OFDM signal contains a header (that is called a cyclic prefix). That message bits are placed. Then again, a cyclic prefix and other message bits are located. The length of the cyclic prefix is a fraction of the length of the message bits. The structure is called a packet containing cyclic prefixes and message bits.
Let's assume I need to transmit 16 bits as an OFDM symbol. If the length of the cyclic prefix is 4, then the original OFDM symbol, for example, is 1001100101010110. The OFDM symbol with the cyclic prefix will be 01101001100101010110, where the last 4 bits of the OFDM symbol are copied to the front of the original symbol.
 
Fig: OFDM Modulation and Demodulation


What are the roles of cyclic prefixes in an OFDM packet?

  1. It mitigates the inter-symbol interference (ISI)
  2. It works as training bits
  3. It helps in equalization

The process of sending an OFDM packet practically

Firstly, we apply inverse fast Fourier transform (IFFT) on the OFDM packet's bits to define it in the time domain. Oppositely, on the receiver side, we apply a fast Fourier transform (FFT) to recover the original OFDM packet.

For example, if you are transmitting 100 OFDM symbols, each symbol contains 64 bits, and the number of subcarriers is 64, then there will be 64 subchannels in parallel. 
 

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Comparisons among ASK, PSK, and FSK | And the definitions of each

๐Ÿ“˜ Comparisons among ASK, FSK, and PSK ๐Ÿงฎ Online Simulator for calculating Bandwidth of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK ๐Ÿ“š Further Reading ๐Ÿ“‚ View Other Topics on Comparisons among ASK, PSK, and FSK ... ๐Ÿงฎ Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. ๐Ÿงฎ MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ Online Simulator for ASK, FSK, and PSK Generation ๐Ÿงฎ Online Simulator for ASK, FSK, and PSK Constellation ๐Ÿงฎ Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Online Simulator for BER calculation of m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... ๐Ÿ“š Further Reading ๐Ÿ“‚ View Other Topics on M-ary QAM, M-ary PSK, QPSK ... ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary QAM ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER calculation of Alamouti Scheme ๐Ÿงฎ Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

Constellation Diagrams of ASK, PSK, and FSK

๐Ÿ“˜ Overview of Energy per Bit (Eb / N0) ๐Ÿงฎ Online Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory behind Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... ๐Ÿงฎ Simulator for constellation diagrams of m-ary PSK ๐Ÿงฎ Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Theoretical BER vs SNR for BPSK

Let's simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel.  Key Points Fig 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗] BPSK Modulation: Transmits one of two signals: +√Eb ​ or -√Eb , where Eb​ is the energy per bit. These signals represent binary 0 and 1 . AWGN Channel: The channel adds Gaussian noise with zero mean and variance N0/2 (where N0 ​ is the noise power spectral density). Receiver Decision: The receiver decides if the received signal is closer to +√Eb​ (for bit 0) or -√Eb​ (for bit 1) . Bit Error Rate (BER) The probability of error (BER) for BPSK is given by a function called the Q-function. The Q-function Q(x) measures the tail probability of the normal distribution, i.e., the probability that a Gaussian random variable exceeds a certain value x.  Understanding the Q...

MATLAB Code for ASK, FSK, and PSK

๐Ÿ“˜ Overview & Theory ๐Ÿงฎ MATLAB Code for ASK ๐Ÿงฎ MATLAB Code for FSK ๐Ÿงฎ MATLAB Code for PSK ๐Ÿงฎ Simulator for binary ASK, FSK, and PSK Modulations ๐Ÿ“š Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for Amplitude Shift Keying (ASK) % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration fc = 10; % Carrier frequency N = 10; % Number of bits % Generate carrier signal t = 0:Tb/100:1; carrier_signal = sqrt(2/Tb) * sin(2*pi*fc*t); % Generate message signal rng(10); % Set random seed for reproducibility binary_data = rand(1, N); % Generate random binary data t_start = 0; t_end = Tb; for i = 1:N t = [t_start:0.01:t_end]; % Generate message signal if binary_data(i) > 0.5 binary_data(i) = 1; message_signal = ones(1, length(t)); ...

MATLAB Code for Zero-Forcing (ZF) Beamforming in 4×4 MIMO Systems

MATLAB Code for Zero-Forcing (ZF) Beamforming in 4×4 MIMO Systems clc; clear; close all; %% Parameters Nt = 4; % Transmit antennas Nr = 4; % Receive antennas (must be >= Nt for ZFBF) numBits = 1e4; % Number of bits per stream SNRdB = 0; % SNR in dB numRuns = 100; % Number of independent runs for averaging %% Precompute noise standard deviation noiseSigma = 10^(-SNRdB / 20); %% Accumulator for total errors totalErrors = 0; for run = 1:numRuns % Generate random bits: [4 x 10000] bits = randi([0 1], Nt, numBits); % BPSK modulation: 0 → +1, 1 → -1 txSymbols = 1 - 2 * bits; % Rayleigh channel matrix: [4 x 4] H = (randn(Nr, Nt) + 1j * randn(Nr, Nt)) / sqrt(2); %% === Zero Forcing Beamforming at Transmitter === W_zf = pinv(H); % Precoding matrix: [Nt x Nr] txPrecoded = W_zf * txSymbols; % Apply ZF precoding % Normalize transmit power (optional but useful) txPrecoded = txPrecoded / sqrt(mean(abs(txPrecoded(:)).^2)); %% Channel transmission with AWGN noise = noiseSigma * (randn(...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

๐Ÿงฎ MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together ๐Ÿงฎ MATLAB Code for M-ary QAM ๐Ÿงฎ MATLAB Code for M-ary PSK ๐Ÿ“š Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for ...

Constellation Diagrams of M-ary QAM | M-ary Modulation

๐Ÿ“˜ Overview of QAM ๐Ÿงฎ MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) ๐Ÿงฎ Online Simulator for M-ary QAM Constellations ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Constellation Diagrams of QAM configurations ... ๐Ÿงฎ MATLAB Code for 4-QAM ๐Ÿงฎ MATLAB Code for 16-QAM ๐Ÿงฎ MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) ๐Ÿงฎ Simulator for constellation diagrams of m-ary PSK ๐Ÿงฎ Simulator for constellation diagrams of m-ary QAM ๐Ÿงฎ Overview of Energy per Bit (Eb / N0) ๐Ÿงฎ Online Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory behind Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK QAM Unlike M-ary PSK, where the signal is modulated with diffe...