Skip to main content

Applications of a Raise Cosine Filter

 

For a typical wireless communication system, we use modulation schemes and filters before transmitting the signal. The main purpose of using it is to transmit a proper waveform so that we can recover the signal at the receiving end more accurately. 

If the roll-off factor is α, then 

Bandwidth (B) = (1 + α) / (2 * T)

where T is the time interval. The filter response is zero outside that.

The roll-off factor is a parameter used to shape the spectrum of a digital signal in communication systems, and it is not just the product of time and bandwidth. It affects both the time and frequency domain characteristics of the signal.


Example

According to the Nyquist criterion, the sampling frequency of a signal must be at least twice the highest frequency present in the message signal. Conversely, during signal transmission, the bandwidth of the transmitted signal must be at least half the symbol rate to ensure inter-symbol interference (ISI)-free transmission. A raised cosine filter facilitates this requirement.

For example, if the symbol rate is 100 symbols per second, the minimum bandwidth required for ISI-free transmission is: 100 / 2 = 50 Hz

In simple terms, the symbol rate indicates that symbols are changing 100 times per second. To recover the transmitted signal at the receiver end without ISI, the minimum transmission bandwidth required is 50 Hz.

The bandwidth of a raised cosine filter is given by the formula:

Bandwidth = (Symbol Rate × (1 + α)) / 2

where α is the roll-off factor of the filter. If the roll-off factor α is 0.25, the bandwidth is calculated as:

Bandwidth = (100 × (1 + 0.25)) / 2 = 62.5 Hz

This bandwidth (62.5 Hz) exceeds the minimum requirement of 50 Hz for transmitting a signal at a symbol rate of 100 symbols per second. 

 

 MATLAB Code for the example above

% The code is developed by SalimWireless.Com
clc;
clear;
close all;

% Parameters
fs = 1000; % Sampling frequency in Hz
symbolRate = 100; % Symbol rate (baud)
span = 6; % Filter span in symbols
alpha = 0.25; % Roll-off factor for raised cosine filter


% Generate random data symbols
numSymbols = 100; % Number of symbols
data = randi([0 1], numSymbols, 1) * 2 - 1; % Generate random binary data (BPSK symbols: -1, 1)

% Upsample the data to match sampling rate
samplesPerSymbol = fs / symbolRate; % Samples per symbol based on fs and symbol rate
dataUpsampled = upsample(data, samplesPerSymbol);

% Create a raised cosine filter
rcFilter = rcosdesign(alpha, span, samplesPerSymbol, 'sqrt'); % Square root raised cosine filter

% Apply the filter to the upsampled data
txSignal = conv(dataUpsampled, rcFilter, 'same');

figure;
subplot(4,1,1)
stem(data);
title('Original Message signal');
grid on;

subplot(4,1,2)
plot(dataUpsampled);
title('Upsampled Message signal');
grid on;

subplot(4,1,3)
plot(rcFilter);
title('Raise Cosine Filter Coefficient');
grid on;

subplot(4,1,4)
plot(txSignal);
title('Transmitted Signal after Raised Cosine Filtering');
grid on;

Output 

 




 
 


 


MATLAB code for raise-cosine filter


 

Result


Figure: Raise-Cosine Filter

There are 961 samples in the x-axis of the above image, as the upsampling factor is 480 here and filter span is 2.


Application

A raised cosine filter is used for pulse shaping. You might have noticed in most of the diagrams of 'communication systems.' It is common to use this type of filter after the modulation module.

Further Reading

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Hybrid Beamforming | Page 2

Beamforming Techniques Hybrid Beamforming... Page 1 | Page 2 | clear all; close all; clc; Nt = 64; Nr = 16; NtRF = 4; NrRF = 4; At both the transmitter and receiver ends, there are four RF chains only for a hybrid beamforming system. Alternatively, every 16 antenna elements on the transmitter side is connected to a single RF chain, while every 4 antenna elements on the receiver side are connected to a single RF chain. Mixers, amplifiers, and other critical wireless communication components make up the RF chain. Now, in the case of hybrid beamforming, there can be four different data streams between the transmitter and receiver, as both sides have four RF chains, each of which is accountable for a separate data stream. For Analog Beamforming: All 64 Tx antenna elements create a beam or focus the resultant correlated signal spread from adjacent antennas to a particular direction. Similarly, it may be used for beam...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

MATLAB Code for Channel Impulse Response

MATLAB Code for Channel Impulse Response (CIR) 📘 Overview & Theory 🧮 MATLAB Code 🤔 How does CIR affect the signal? 🛠️ How to Mitigate Channel Distortion? 📚 Further Reading MATLAB Script for Simulating CIR This MATLAB script allows you to generate and visualize the channel impulse response (CIR). You can choose to create a 'random' multi-path channel or a near-'ideal' single-path channel to understand their distinct characteristics. % User input for choosing the type of impulse response response_type = input('Enter "random" for random channel impulse response or "ideal" for near-ideal impulse response: ', 's'); if strcmpi(response_type, 'random') % Parameters for random impulse response num_taps = input('Enter the number of taps: '); % Number of taps in the channel d...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate a...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for ...

Antenna Gain-Combining Methods - EGC, MRC, SC, and RMSGC

📘 Overview 🧮 Equal gain combining (EGC) 🧮 Maximum ratio combining (MRC) 🧮 Selective combining (SC) 🧮 Root mean square gain combining (RMSGC) 🧮 Zero-Forcing (ZF) Combining 🧮 MATLAB Code 📚 Further Reading  There are different antenna gain-combining methods. They are as follows. 1. Equal gain combining (EGC) 2. Maximum ratio combining (MRC) 3. Selective combining (SC) 4. Root mean square gain combining (RMSGC) 5. Zero-Forcing (ZF) Combining  1. Equal gain combining method Equal Gain Combining (EGC) is a diversity combining technique in which the receiver aligns the phase of the received signals from multiple antennas (or channels) but gives them equal amplitude weight before summing. This means each received signal is phase-corrected to be coherent with others, but no scaling is applied based on signal strength or channel quality (unlike MRC). Mathematically, for received signa...

Ultra-Wideband | Positioning, Frequency Range, Power and AoA & AoD detection

Frequency Bands Ultra-Wideband... UWB functions with the signal's so-called Time of Flight rather than RSSI (Received Signal Strength Indication), which makes technology more precise and enables it to conduct extremely precise ranging measurements. This is in contrast to traditional radio technologies (like Bluetooth or Wi-Fi). Key Features of UWB Bands UWB in order to bring decimeter-level positioning to the market There is almost no interference with other radio communication systems Multipath signal propagation resistance  resistance to noise  Low-power transceiver required Ultra Wide Band or UWB comes under the  Super High Frequency Band (SHF) range, as SHF ranges from 3 to 30 GHz. UWB frequency range: 3.1 GHz to 10.6 GHz Ultra-wideband or UWB technology is used for high-speed short-range wireless communication protocol. Now, it is a globally accepted protocol used in Mobile Telephony, AirTags, Medical fields, and NFC (near-field co...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR v...