Skip to main content

Is Delta Modulation practically used for Typical Wireless Communication?

 

Delta modulation and demodulation [↗] processes are pretty simple. It uses a 1-bit quantizer, or there are 2^(1) = two quantization levels. In this encoding technique, we compare the succeeded sample with the previous sample. If it is greater than the previous sample, we assign 1. Otherwise, we assign 0. Here, we encode the modulated signal like this. However, this modulation scheme is susceptible to noise. So Delta modulation (DM) is not commonly used in typical wireless communication systems for several reasons:

Noise Sensitivity: 

Delta modulation is highly sensitive to noise due to its reliance on small changes (delta) in the input signal. In wireless communication systems, especially in environments with high levels of noise and interference, delta modulation may result in poor performance and low signal fidelity.

Quantization Errors: 

Delta modulation suffers from quantization errors, which occur when the difference between the input signal and the predicted value exceeds the step size (delta). These errors can accumulate over time, leading to distortion and degradation of the decoded signal quality.

Low Bit Efficiency: 

Delta modulation typically uses only one bit per sample to represent the signal, resulting in low bit efficiency compared to more sophisticated modulation schemes. This limitation makes delta modulation less suitable for applications requiring high data rates or efficient spectrum utilization.

Better Alternatives: 

In modern wireless communication systems, there are several alternative modulation schemes that offer better performance, robustness to noise, and higher data rates than delta modulation. Techniques such as amplitude modulation (AM), frequency modulation (FM), phase modulation (PM), and various digital modulation schemes (e.g., QPSK, QAM) are commonly used in wireless standards like Wi-Fi, Bluetooth, LTE, and 5G.

Adaptive Techniques: 

While adaptive delta modulation (ADM) can improve the performance of delta modulation by dynamically adjusting the step size based on the input signal characteristics, it still suffers from limitations related to noise sensitivity and quantization errors.

Overall, while delta modulation has certain advantages such as simplicity and low complexity, it is not commonly used in typical wireless communication systems due to its limitations in terms of noise sensitivity, quantization errors, and low bit efficiency. More advanced modulation schemes are preferred for achieving higher performance, robustness, and efficiency in wireless communication applications. 

MATLAB Code for BER vs SNR for Delta Modulation 

clear all;
close all;
clc;

% Parameters
N = 1000000; % Number of bits
SNR_dB = 0:1:20; % SNR in dB
SNR_lin = 10.^(SNR_dB./10); % Linear SNR
delta = 0.1; % Step size for delta modulation

% Generate random binary data
data = randi([0,1],N,1);

% Delta modulation
for k = 1:length(SNR_dB)
% Encode data using delta modulation
encoded_data = zeros(N,1);
for i = 1:N
if i == 1
encoded_data(i) = data(i); % First bit directly encoded
else
prediction = encoded_data(i-1) + delta*2*(randi([0,1])-0.5); % Predictor
if data(i) == 0 % If bit is 0, follow prediction
encoded_data(i) = prediction;
else % If bit is 1, add delta to the prediction
encoded_data(i) = prediction + delta;
end
end
end

% Add noise
noise_power = 1/SNR_lin(k);
noise = sqrt(noise_power) * randn(size(encoded_data));
received_data = encoded_data + noise;

% Decode received data
decoded_data = zeros(N,1);
for i = 1:N
if i == 1
decoded_data(i) = received_data(i); % First bit directly decoded
else
if received_data(i) >= encoded_data(i-1) % If received value is greater than previous, decode as 1
decoded_data(i) = 1;
else % Otherwise, decode as 0
decoded_data(i) = 0;
end
end
end

% Calculate BER
errors = sum(data ~= decoded_data);
BER(k) = errors/N;
end

% Plot BER vs SNR
figure;
semilogy(SNR_dB,BER,'b-o');
grid on;
xlabel('SNR (dB)');
ylabel('Bit Error Rate (BER)');
title('BER vs SNR in Delta Modulation');

Output


 
Fig: BER vs SNR in Delta Modulation (DM) where step-size = 0.1
 

Copy the MATLAB Code from here


People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Calculation of SNR from FFT bins in MATLAB

📘 Overview 🧮 MATLAB Code for Estimation of SNR from FFT bins of a Noisy Signal 🧮 MATLAB Code for Estimation of Signal-to-Noise Ratio from Power Spectral Density Using FFT and Kaiser Window Periodogram from real signal data 📚 Further Reading   Here, you can find the SNR of a received signal from periodogram / FFT bins using the Kaiser operator. The beta (β) parameter characterizes the Kaiser window, which controls the trade-off between the main lobe width and the side lobe level in the frequency domain. For that you should know the sampling rate of the signal.  The Kaiser window is a type of window function commonly used in signal processing, particularly for designing finite impulse response (FIR) filters and performing spectral analysis. It is a general-purpose window that allows for control over the trade-off between the main lobe width (frequency resolution) and side lobe levels (suppression of spectral leakage). The Kaiser window is defined...

MIMO Channel Matrix | Rank and Condition Number

MIMO / Massive MIMO MIMO Channel Matrix | Rank and Condition...   The channel matrix in wireless communication is a matrix that describes the impact of the channel on the transmitted signal. The channel matrix can be used to model the effects of the atmospheric or underwater environment on the signal, such as the absorption, reflection or scattering of the signal by surrounding objects. When addressing multi-antenna communication, the term "channel matrix" is used. Let's assume that only one TX and one RX are in communication and there's no surrounding object. Here, in our case, we can apply the proper threshold condition to a received signal and get the original transmitted signal at the RX side. However, in real-world situations, we see signal path blockage, reflections, etc.,  (NLOS paths [↗]) more frequently. The obstruction is typically caused by building walls, etc. Multi-antenna communication was introduced to address this issue. It makes diversity app...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 Coherence Time Calculator 🧮 Relationship between Coherence Time and Delay Spread 🧮 MATLAB Code to find Relationship between Coherence Time and delay Spread 📚 Further Reading   Coherence Bandwidth Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics. coherence bandwidth is  The inverse of Doppler spread delay time, or any spread delay time due to fading in general.  The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel. The two are related by the following formulae: Coherence bandwidth = 1/(delay spread time) Or, Coherence Bandwidth = 1/(root-mean-square delay spread time) (Coherence bandwidth in Hertz) For instance, the coherence bandwidth is...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

What are Precoding and Combining Weights / Matrices in a MIMO Beamforming System

MIMO / Massive MIMO Beamforming Techniques Precoding and Combining Weights...   Figure:  configuration of single-user digital precoder for millimeter  Wave massive MIMO system Precoding and combining are two excellent ways to send and receive signals over a multi-antenna communication process, respectively (i.e., MIMO antenna communication ). The channel matrix is the basis of both the precoding and combining matrices. Precoding matrices are typically used on the transmitter side and combining matrixes on the receiving side. The two matrices allow us to generate multiple simultaneous data streams between the transmitter and receiver. The nature of the data streams is also orthogonal. That helps decrease or cancel (theoretically) interference between any two data streams. The channel matrix is first properly diagonalized. Diagonalization is the process of transforming any matrix into an equivalent diagon...

Simulation of ASK, FSK, and PSK using MATLAB Simulink

📘 Overview 🧮 How to use MATLAB Simulink 🧮 Simulation of ASK using MATLAB Simulink 🧮 Simulation of FSK using MATLAB Simulink 🧮 Simulation of PSK using MATLAB Simulink 🧮 Simulator for ASK, FSK, and PSK 🧮 Digital Signal Processing Simulator 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying b...