Skip to main content

Alamouti Scheme for 2x2 MIMO in MATLAB


 

 Read about the Alamouti Scheme first

MATLAB Code for Alamouti's Precoding Matrix for 2 X 2 MIMO

% Clear any existing data and figures
clc;
clear;
close all;

% Define system parameters
transmitAntennas = 2; % Number of antennas at the transmitter
receiveAntennas = 2; % Number of antennas at the receiver
symbolCount = 1000000; % Number of symbols to transmit
SNR_dB = 15; % Signal-to-Noise Ratio in decibels

% Generate random binary data for transmission
rng(10); % Set seed for reproducibility
transmitData = randi([0, 1], transmitAntennas, symbolCount);

% Perform Binary Phase Shift Keying (BPSK) modulation
modulatedSymbols = 1 - 2 * transmitData;

% Define Alamouti's Precoding Matrix
precodingMatrix = [1 1; -1i 1i];

% Encode and transmit data using Alamouti scheme
transmittedSymbols = zeros(transmitAntennas, symbolCount);
for idx = 1:2:symbolCount
transmittedSymbols(:, idx:idx+1) = precodingMatrix * modulatedSymbols(:, idx:idx+1);
end

% Simulate Rayleigh fading channel
channelMatrix = (randn(receiveAntennas, transmitAntennas) + 1i * randn(receiveAntennas, transmitAntennas)) / sqrt(2);

% Receive signal and add AWGN
receivedSignal = awgn(channelMatrix * transmittedSymbols, SNR_dB, 'measured');

% Decode and demodulate received symbols
decodedSymbols = zeros(transmitAntennas, symbolCount);
for idx = 1:2:symbolCount
% Estimate received symbols using channel information
receivedEstimation = channelMatrix' * receivedSignal(:, idx:idx+1);
% Decode symbols using Alamouti decoding
decodedSymbols(:, idx:idx+1) = precodingMatrix' * receivedEstimation;
end

% Perform BPSK demodulation to retrieve received binary data
receivedBinaryData = decodedSymbols < 0;

% Calculate error rate
errorCount = sum(sum(transmitData ~= receivedBinaryData));
errorRate = errorCount / (transmitAntennas * symbolCount);

% Display the error rate
disp(['Error rate: ', num2str(errorRate)]);

 

Output

 Error rate: 0

You can run a loop by varying the SNR values. You can plot the BER vs SNR graph easily.

 

Copy the MATLAB Code from Here

 

 

Alamouti Scheme Transmission Table

 

 

 

 

 

 

 

 

The above table illustrates how two orthogonal, time-diversity data streams are transmitted using two different time slots to improve the signal-to-noise ratio (SNR) at the receiver.

For a symbol stream S1,S2,S3,S4,,Sn1,SnS_1, S_2, S_3, S_4, \ldots, S_{n-1}, S_n, we first transmit S1S_1 and S2S_2 from antenna 1 and antenna 2, respectively. In the next time slot, we transmit S2-S_2^* and S1S_1^* from antenna 1 and antenna 2, respectively.

Note: To enable the Alamouti scheme, at least two transmit antennas and one receive antenna are required.

In the third time slot, S3S_3 and S4S_4 are transmitted from antenna 1 and antenna 2. In the fourth time slot, S4-S_4^* and S3S_3^* are transmitted from antenna 1 and antenna 2, respectively — and this pattern continues. [Read More ...]

 

Further Reading

  1.  Modified Alamouti's Scheme (STBC) in MATLAB (using QPSK)
  2. Alamouti's Scheme for MIMO Communication
  3. Theoretical Ber vs Snr for Alamouti Scheme 
  4. MATLAB Code for Multi-User STBC (using Alamouti's Scheme)
  5. Alamouti Scheme Simulator

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Channel Impulse Response (CIR)

📘 Overview & Theory 📘 How CIR Affects the Signal 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading What is the Channel Impulse Response (CIR)? The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal. It describes the behavior of a communication channel in response to an impulse signal. In signal processing, an impulse signal has zero amplitude at all other times and amplitude ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this. Fig: Dirac Delta Function The result of this calculation is that all frequencies are responded to equally by δ(t) . This is crucial since we never know which frequenci...

RMS Delay Spread, Excess Delay Spread and Multi-path ...

📘 Overview of Delay Spread and Multi-path 🧮 Excess Delay spread 🧮 Power delay Profile 🧮 RMS Delay Spread 📚 Further Reading 📂 Other Topics on RMS Delay Spread, Excess Delay ... 🧮 Multipath Components or MPCs 🧮 Online Simulator for Calculating RMS Delay Spread 🧮 Why is there significant multipath in the case of very high frequencies? 🧮 Why RMS Delay Spread is essential for wireless communication? 🧮 Why the Power Delay Profile is essential? 🧮 MATLAB Codes for Calculating Different Types of delay Spreads Delay Spread, Excess Delay Spread, and Multipath (MPCs) The fundamental distinction between wireless and wired connections is that in wireless connections signal reaches at receiver thru multipath signal propagation rather than directed transmission like co-axial cable. Wireless Communication has no set communication path between the transmitter and the receiver. The line...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

ASK, FSK, and PSK

📘 Overview 📘 Amplitude Shift Keying (ASK) 📘 Frequency Shift Keying (FSK) 📘 Phase Shift Keying (PSK) 📘 Which of the modulation techniques—ASK, FSK, or PSK—can achieve higher bit rates? 🧮 MATLAB Codes 📘 Simulator for binary ASK, FSK, and PSK Modulation 📚 Further Reading ASK or OFF ON Keying ASK is a simple (less complex) Digital Modulation Scheme where we vary the modulation signal's amplitude or voltage by the message signal's amplitude or voltage. We select two levels (two different voltage levels) for transmitting modulated message signals. For example, "+5 Volt" (upper level) and "0 Volt" (lower level). To transmit binary bit "1", the transmitter sends "+5 Volts", and for bit "0", it sends no power. The receiver uses filters to detect whether a binary "1" or "0" was transmitted. ...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 MATLAB Code s 📚 Further Reading For Doppler Delay or Multi-path Delay Coherence time T coh ∝ 1 / v max (For slow fading, coherence time T coh is greater than the signaling interval.) Coherence bandwidth W coh ∝ 1 / Ï„ max (For frequency-flat fading, coherence bandwidth W coh is greater than the signaling bandwidth.) Where: T coh = coherence time W coh = coherence bandwidth v max = maximum Doppler frequency (or maximum Doppler shift) Ï„ max = maximum excess delay (maximum time delay spread) Notes: The notation v max −1 and Ï„ max −1 indicate inverse proportionality. Doppler spread refers to the range of frequency shifts caused by relative motion, determining T coh . Delay spread (or multipath delay spread) determines W coh . Frequency-flat fading occurs when W coh is greater than the signaling bandwidth. Coherence Bandwidth Coherence bandwidth is...