Skip to main content

Alamouti's Scheme for MIMO Communication

 

 The Alamouti scheme is a simple and effective space-time block coding (STBC) technique used in wireless communications to achieve diversity gain. It's designed for systems with two transmit antennas and one or more receive antennas, providing transmit diversity.

Alamouti's Space-Time Block Coding (STBC) is a technique used in MIMO wireless communication systems to achieve diversity gain without requiring channel knowledge at the transmitter.

Alamouti 2 X 1 Matrix Equation Representation

y
=
h11
h21
X
s1 -s2*
s2 s1*
+
n
It involves transmitting multiple copies of the same symbols over multiple antennas with specific phase relationships. This allows the receiver to combine the signals effectively and recover the transmitted symbols even in the presence of fading.

The Alamouti precoding matrix is constructed based on the Alamouti code, which defines the phase relationships between the symbols transmitted from different antennas over two consecutive time slots. For a 2x1 MIMO system (two transmit antennas and one receive antenna), the Alamouti precoding matrix is as follows:

Precoding Matrix=[s1  −s2∗;  s2   s1∗]

Where:

    s1 and s2 are the symbols to be transmitted from the two antennas in the current time slot.
    s1∗​ and s2∗​ are the complex conjugates of s1​ and s2​ respectively.

This matrix ensures that the symbols transmitted from the two antennas in the current time slot have the necessary phase relationships to achieve diversity gain at the receiver.

Here's how the Alamouti precoding matrix works:

    In the first time slot, symbols s1​ and s2​ are transmitted from the two antennas without any phase manipulation.
    In the second time slot, symbols −s2∗​ and s1∗​ are transmitted from the two antennas. The negative sign and complex conjugate ensure the correct phase relationship required for diversity gain at the receiver.
    At the receiver, combining the signals from the two time slots using Alamouti decoding allows for effective recovery of the transmitted symbols, even in the presence of fading.

By using Alamouti's STBC and the corresponding precoding matrix, the MIMO system can achieve diversity gain and improve performance without requiring explicit channel knowledge at the transmitter. 

 

Orthogonality Property 

Alamouti's Space-Time Block Coding (STBC) scheme ensures that symbols transmitted from different antennas in successive time slots are orthogonal to each other. This orthogonality property is essential for enabling simple decoding at the receiver and achieving diversity gain without requiring channel knowledge at the transmitter.



Now, let's calculate the inner product (dot product) between two encoded symbols transmitted from different antennas in successive time slots.

Let x1x1​ and x2x2​ be the encoded symbols transmitted from the two antennas in the first and second time slots respectively.

x1=[s1 ; s2]
x2=[−s2∗​ ; s1∗​​]

The inner product x1' * x2​ is given by:

x1' * x2​ = [s1 ; ​​s2​​] * [−s2∗​ ; s1∗​​]
=−∣s2∣^2 + ∣s1∣^2


Since the symbols s1​ and s2​ are independent and identically distributed (IID) random variables with equal power, their magnitudes are equal, i.e., ∣s1∣=∣s2∣. Therefore, the inner product x1' * x2​ simplifies to:

x1' * x2 = −∣s2∣^2 + ∣s1∣^2 = 0x1T​x2​= −∣s1∣^2 + ∣s1∣^2 = 0

This shows that the inner product between the encoded symbols transmitted from different antennas in successive time slots is zero, indicating orthogonality.

This orthogonality property allows the receiver to effectively decode the transmitted symbols by taking advantage of the diversity provided by the multiple antennas without interference between symbols transmitted from different antennas.

 

 
 
Fig 1:  BER vs SNR for Alamouti's Precoding Matrix for 2 X 2 MIMO in MATLAB

(Get MATLAB Code for Alamouti's Precoding Matrix for 2 X 2 MIMO in MATLAB)

Also Read about

[1] Alamouti's Precoding Matrix for 2 X 2 MIMO in MATLAB

[2] Theoretical BER vs SNR for Alamouti's Scheme 

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Gaussian minimum shift keying (GMSK)

📘 Overview & Theory 🧮 Simulator for GMSK 🧮 MSK and GMSK: Understanding the Relationship 🧮 MATLAB Code for GMSK 📚 Simulation Results for GMSK 📚 Q & A and Summary 📚 Further Reading Dive into the fascinating world of GMSK modulation, where continuous phase modulation and spectral efficiency come together for robust communication systems! Core Process of GMSK Modulation Phase Accumulation (Integration of Filtered Signal) After applying Gaussian filtering to the Non-Return-to-Zero (NRZ) signal, we integrate the smoothed NRZ signal over time to produce a continuous phase signal: θ(t) = ∫ 0 t m filtered (Ï„) dÏ„ This integration is crucial for avoiding abrupt phase transitions, ensuring smooth and continuous phase changes. Phase Modulation The next step involves using the phase signal to modulate a...

Difference between AWGN and Rayleigh Fading

📘 Introduction, AWGN, and Rayleigh Fading 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the si...

Calculation of SNR from FFT bins in MATLAB

📘 Overview 🧮 MATLAB Code for Estimation of SNR from FFT bins of a Noisy Signal 🧮 MATLAB Code for Estimation of Signal-to-Noise Ratio from Power Spectral Density Using FFT and Kaiser Window Periodogram from real signal data 📚 Further Reading   Here, you can find the SNR of a received signal from periodogram / FFT bins using the Kaiser operator. The beta (β) parameter characterizes the Kaiser window, which controls the trade-off between the main lobe width and the side lobe level in the frequency domain. For that you should know the sampling rate of the signal.  The Kaiser window is a type of window function commonly used in signal processing, particularly for designing finite impulse response (FIR) filters and performing spectral analysis. It is a general-purpose window that allows for control over the trade-off between the main lobe width (frequency resolution) and side lobe levels (suppression of spectral leakage). The Kaiser window is defined...

Simulation of ASK, FSK, and PSK using MATLAB Simulink

📘 Overview 🧮 How to use MATLAB Simulink 🧮 Simulation of ASK using MATLAB Simulink 🧮 Simulation of FSK using MATLAB Simulink 🧮 Simulation of PSK using MATLAB Simulink 🧮 Simulator for ASK, FSK, and PSK 🧮 Digital Signal Processing Simulator 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying b...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR v...

Constellation Diagrams of M-ary QAM | M-ary Modulation

📘 Overview of QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations 📚 Further Reading 📂 Other Topics on Constellation Diagrams of QAM configurations ... 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 🧮 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK QAM Unlike M-ary PSK, where the signal is modulated with diffe...

MATLAB Code for Constellation Diagram of QAM configurations such as 4, 8, 16, 32, 64, 128, and 256-QAM

📘 Overview of QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations (4-QAM, 16-QAM, 64-QAM, ...) 📚 Further Reading 📂 Other Topics on Constellation Diagrams of QAM configurations ... 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 🧮 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK   One of the best-performing modulation techniques is QAM [↗] . Here, we modulate the symbols by varying the carrier signal's amplitude and phase in response to the vari...