Skip to main content

Alamouti's Scheme for MIMO Communication

 

 The Alamouti scheme is a simple and effective space-time block coding (STBC) technique used in wireless communications to achieve diversity gain. It's designed for systems with two transmit antennas and one or more receive antennas, providing transmit diversity.

Alamouti's Space-Time Block Coding (STBC) is a technique used in MIMO wireless communication systems to achieve diversity gain without requiring channel knowledge at the transmitter.

Alamouti 2 X 1 Matrix Equation Representation

y
=
h11
h21
X
s1 -s2*
s2 s1*
+
n
It involves transmitting multiple copies of the same symbols over multiple antennas with specific phase relationships. This allows the receiver to combine the signals effectively and recover the transmitted symbols even in the presence of fading.

The Alamouti precoding matrix is constructed based on the Alamouti code, which defines the phase relationships between the symbols transmitted from different antennas over two consecutive time slots. For a 2x1 MIMO system (two transmit antennas and one receive antenna), the Alamouti precoding matrix is as follows:

Precoding Matrix=[s1  −s2∗;  s2   s1∗]

Where:

    s1 and s2 are the symbols to be transmitted from the two antennas in the current time slot.
    s1∗​ and s2∗​ are the complex conjugates of s1​ and s2​ respectively.

This matrix ensures that the symbols transmitted from the two antennas in the current time slot have the necessary phase relationships to achieve diversity gain at the receiver.

Here's how the Alamouti precoding matrix works:

    In the first time slot, symbols s1​ and s2​ are transmitted from the two antennas without any phase manipulation.
    In the second time slot, symbols −s2∗​ and s1∗​ are transmitted from the two antennas. The negative sign and complex conjugate ensure the correct phase relationship required for diversity gain at the receiver.
    At the receiver, combining the signals from the two time slots using Alamouti decoding allows for effective recovery of the transmitted symbols, even in the presence of fading.

By using Alamouti's STBC and the corresponding precoding matrix, the MIMO system can achieve diversity gain and improve performance without requiring explicit channel knowledge at the transmitter. 

 

Orthogonality Property 

Alamouti's Space-Time Block Coding (STBC) scheme ensures that symbols transmitted from different antennas in successive time slots are orthogonal to each other. This orthogonality property is essential for enabling simple decoding at the receiver and achieving diversity gain without requiring channel knowledge at the transmitter.



Now, let's calculate the inner product (dot product) between two encoded symbols transmitted from different antennas in successive time slots.

Let x1x1​ and x2x2​ be the encoded symbols transmitted from the two antennas in the first and second time slots respectively.

x1=[s1 ; s2]
x2=[−s2∗​ ; s1∗​​]

The inner product x1' * x2​ is given by:

x1' * x2​ = [s1 ; ​​s2​​] * [−s2∗​ ; s1∗​​]
=−∣s2∣^2 + ∣s1∣^2


Since the symbols s1​ and s2​ are independent and identically distributed (IID) random variables with equal power, their magnitudes are equal, i.e., ∣s1∣=∣s2∣. Therefore, the inner product x1' * x2​ simplifies to:

x1' * x2 = −∣s2∣^2 + ∣s1∣^2 = 0x1T​x2​= −∣s1∣^2 + ∣s1∣^2 = 0

This shows that the inner product between the encoded symbols transmitted from different antennas in successive time slots is zero, indicating orthogonality.

This orthogonality property allows the receiver to effectively decode the transmitted symbols by taking advantage of the diversity provided by the multiple antennas without interference between symbols transmitted from different antennas.

 

 
 
Fig 1:  BER vs SNR for Alamouti's Precoding Matrix for 2 X 2 MIMO in MATLAB

(Get MATLAB Code for Alamouti's Precoding Matrix for 2 X 2 MIMO in MATLAB)

Also Read about

[1] Alamouti's Precoding Matrix for 2 X 2 MIMO in MATLAB

[2] Theoretical BER vs SNR for Alamouti's Scheme 

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for Amplitude Shift Keying (ASK) % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration fc = 10; % Carrier frequency N = 10; % Number of bits % Generate carrier signal t = 0:Tb/100:1; carrier_signal = sqrt(2/Tb) * sin(2*pi*fc*t); % Generate message signal rng(10); % Set random seed for reproducibility binary_data = rand(1, N); % Generate random binary data t_start = 0; t_end = Tb; for i = 1:N t = [t_start:0.01:t_end]; % Generate message signal if binary_data(i) > 0.5 binary_data(i) = 1; message_signal = ones(1, length(t)); ...

Theoretical BER vs SNR for BPSK

Let's simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel.  Key Points Fig 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗] BPSK Modulation: Transmits one of two signals: +√Eb ​ or -√Eb , where Eb​ is the energy per bit. These signals represent binary 0 and 1 . AWGN Channel: The channel adds Gaussian noise with zero mean and variance N0/2 (where N0 ​ is the noise power spectral density). Receiver Decision: The receiver decides if the received signal is closer to +√Eb​ (for bit 0) or -√Eb​ (for bit 1) . Bit Error Rate (BER) The probability of error (BER) for BPSK is given by a function called the Q-function. The Q-function Q(x) measures the tail probability of the normal distribution, i.e., the probability that a Gaussian random variable exceeds a certain value x.  Understanding the Q...

Simulation of ASK, FSK, and PSK using MATLAB Simulink

📘 Overview 🧮 How to use MATLAB Simulink 🧮 Simulation of ASK using MATLAB Simulink 🧮 Simulation of FSK using MATLAB Simulink 🧮 Simulation of PSK using MATLAB Simulink 🧮 Simulator for ASK, FSK, and PSK 🧮 Digital Signal Processing Simulator 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying b...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for ...