Skip to main content

Alamouti's Precoding Matrix for MIMO

 

 The Alamouti scheme is a simple and effective space-time block coding (STBC) technique used in wireless communications to achieve diversity gain. It's designed for systems with two transmit antennas and one or more receive antennas, providing transmit diversity.

Alamouti's Space-Time Block Coding (STBC) is a technique used in MIMO wireless communication systems to achieve diversity gain without requiring channel knowledge at the transmitter.

Alamouti 2 X 1 Matrix Equation Representation

y
=
h11
h21
X
s1 -s2*
s2 s1*
+
n
It involves transmitting multiple copies of the same symbols over multiple antennas with specific phase relationships. This allows the receiver to combine the signals effectively and recover the transmitted symbols even in the presence of fading.

The Alamouti precoding matrix is constructed based on the Alamouti code, which defines the phase relationships between the symbols transmitted from different antennas over two consecutive time slots. For a 2x1 MIMO system (two transmit antennas and one receive antenna), the Alamouti precoding matrix is as follows:

Precoding Matrix=[s1  −s2∗;  s2   s1∗]

Where:

    s1 and s2 are the symbols to be transmitted from the two antennas in the current time slot.
    s1∗​ and s2∗​ are the complex conjugates of s1​ and s2​ respectively.

This matrix ensures that the symbols transmitted from the two antennas in the current time slot have the necessary phase relationships to achieve diversity gain at the receiver.

Here's how the Alamouti precoding matrix works:

    In the first time slot, symbols s1​ and s2​ are transmitted from the two antennas without any phase manipulation.
    In the second time slot, symbols −s2∗​ and s1∗​ are transmitted from the two antennas. The negative sign and complex conjugate ensure the correct phase relationship required for diversity gain at the receiver.
    At the receiver, combining the signals from the two time slots using Alamouti decoding allows for effective recovery of the transmitted symbols, even in the presence of fading.

By using Alamouti's STBC and the corresponding precoding matrix, the MIMO system can achieve diversity gain and improve performance without requiring explicit channel knowledge at the transmitter. 

 

Orthogonality Property 

Alamouti's Space-Time Block Coding (STBC) scheme ensures that symbols transmitted from different antennas in successive time slots are orthogonal to each other. This orthogonality property is essential for enabling simple decoding at the receiver and achieving diversity gain without requiring channel knowledge at the transmitter.



Now, let's calculate the inner product (dot product) between two encoded symbols transmitted from different antennas in successive time slots.

Let x1x1​ and x2x2​ be the encoded symbols transmitted from the two antennas in the first and second time slots respectively.

x1=[s1 ; s2]
x2=[−s2∗​ ; s1∗​​]

The inner product x1' * x2​ is given by:

x1' * x2​ = [s1 ; ​​s2​​] * [−s2∗​ ; s1∗​​]
=−∣s2∣^2 + ∣s1∣^2


Since the symbols s1​ and s2​ are independent and identically distributed (IID) random variables with equal power, their magnitudes are equal, i.e., ∣s1∣=∣s2∣. Therefore, the inner product x1' * x2​ simplifies to:

x1' * x2 = −∣s2∣^2 + ∣s1∣^2 = 0x1T​x2​= −∣s1∣^2 + ∣s1∣^2 = 0

This shows that the inner product between the encoded symbols transmitted from different antennas in successive time slots is zero, indicating orthogonality.

This orthogonality property allows the receiver to effectively decode the transmitted symbols by taking advantage of the diversity provided by the multiple antennas without interference between symbols transmitted from different antennas.

 

 
 
Fig 1:  BER vs SNR for Alamouti's Precoding Matrix for 2 X 2 MIMO in MATLAB

(Get MATLAB Code for Alamouti's Precoding Matrix for 2 X 2 MIMO in MATLAB)

Also Read about

[1] Alamouti's Precoding Matrix for 2 X 2 MIMO in MATLAB

[2] Theoretical BER vs SNR for Alamouti's Scheme 

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

MATLAB code for MSK

 Copy the MATLAB Code from here % The code is developed by SalimWireless.com clc; clear; close all; % Define a bit sequence bitSeq = [0, 1, 0, 0, 1, 1, 1, 0, 0, 1]; % Perform MSK modulation [modSignal, timeVec] = modulateMSK(bitSeq, 10, 10, 10000); % Plot the modulated signal subplot(2,1,1); samples = 1:numel(bitSeq); stem(samples, bitSeq); title('Original message signal'); xlabel('Time (s)'); ylabel('Amplitude'); % Plot the modulated signal subplot(2,1,2); samples = 1:10000; plot(samples / 10000, modSignal(1:10000)); title('MSK modulated signal'); xlabel('Time (s)'); ylabel('Amplitude'); % Perform MSK demodulation demodBits = demodMSK(modSignal, 10, 10, 10000); % Function to perform MSK modulation function [signal, timeVec] = modulateMSK(bits, carrierFreq, baudRate, sampleFreq) % Converts a binary bit sequence into an MSK-modulated signal % Inputs: % bits - Binary input sequence % carrierFreq - Carri...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the s...

Constellation Diagrams of ASK, PSK, and FSK

BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams SNR (dB): 15 Add AWGN Noise Modulation Type BPSK BFSK ...

Fundamentals of Channel Estimation

Channel Estimation Techniques Channel Estimation is an auto-regressive process that may be performed with a number of iterations. There are commonly three types of channel estimation approaches. 1. Pilot estimation  2. Blind estimation  3. Semi-blind estimation. For Channel Estimation,  CIR [↗] is used. The amplitudes of the impulses decrease over time and are not correlated. For example, y(n) = h(n) * x(n) + w(n) where y(n) is the received signal, x(n) is the sent signal, and w(n) is the additive white gaussian noise At the next stage, h(n+1) = a*h(n) + w(n) The channel coefficient will be modified as stated above at the subsequent stage. The scaling factor "a" determines the impulse's amplitude, whereas "h(n+1)" represents the channel coefficient at the following stage. Pilot Estimation Method To understand how a communication medium is currently behaving, a channel estimate is necessary. In order to monitor a channel's behavior in practice communication ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

Difference between AWGN and Rayleigh Fading

Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the signal through any type of channel (here, it is a wireless channel or wireless medium). Due to multi-paths the channel impulse response (h) changes. And multi-paths cause Rayleigh fa...

Constellation Diagram of FSK in Detail

  Binary bits '0' and '1' can be mapped to 'j' and '1' to '1', respectively, for Baseband Binary Frequency Shift Keying (BFSK) . Signals are in phase here. These bits can be mapped into baseband representation for a number of uses, including power spectral density (PSD) calculations. For passband BFSK transmission, we can modulate signal 'j' with a lower carrier frequency and signal '1' with a higher carrier frequency while transmitting over a wireless channel. Let's assume we are transmitting carrier signal fc1 for the transmission of binary bit '1' and carrier signal fc2 for the transmission of binary bit '0'. Simulator for 2-FSK Constellation Diagram Simulator for 2-FSK Constellation Diagram SNR (dB): 15 Add AWGN Noise Run Simulation ...

Gaussian minimum shift keying (GMSK)

Dive into the fascinating world of GMSK modulation, where continuous phase modulation and spectral efficiency come together for robust communication systems! Core Process of GMSK Modulation Phase Accumulation (Integration of Filtered Signal) After applying Gaussian filtering to the Non-Return-to-Zero (NRZ) signal, we integrate the smoothed NRZ signal over time to produce a continuous phase signal: θ(t) = ∫ 0 t m filtered (Ï„) dÏ„ This integration is crucial for avoiding abrupt phase transitions, ensuring smooth and continuous phase changes. Phase Modulation The next step involves using the phase signal to modulate a high-frequency carrier wave: s(t) = cos(2Ï€f c t + θ(t)) Here, f c is the carrier frequency, and s(t) represents the continuous-phase modulated carrier wave. Quadrature Modulation (Optional) ...