Copy the MATLAB Code from here
MATLAB Code
clear;
close all;
% Define a bit sequence
bitSeq = [0, 1, 0, 0, 1, 1, 1, 0, 0, 1];
% Perform MSK modulation
[modSignal, timeVec] = modulateMSK(bitSeq, 10, 10, 10000);
% Plot the modulated signal
subplot(2,1,1);
samples = 1:numel(bitSeq);
stem(samples, bitSeq);
title('Original message signal');
xlabel('Time (s)');
ylabel('Amplitude');
% Plot the modulated signal
subplot(2,1,2);
samples = 1:10000;
plot(samples / 10000, modSignal(1:10000));
title('MSK modulated signal');
xlabel('Time (s)');
ylabel('Amplitude');
% Perform MSK demodulation
demodBits = demodMSK(modSignal, 10, 10, 10000);
% Function to perform MSK modulation
function [signal, timeVec] = modulateMSK(bits, carrierFreq, baudRate, sampleFreq)
% Converts a binary bit sequence into an MSK-modulated signal
% Inputs:
% bits - Binary input sequence
% carrierFreq - Carrier frequency
% baudRate - Symbol rate
% sampleFreq - Sampling frequency
% Outputs:
% signal - Modulated MSK signal
% timeVec - Corresponding time vector
% Convert bits to NRZ format (-1, 1)
diffEncBits = 2 * bits - 1;
diffEncBits = [-1, diffEncBits]; % Append initial value
% Define time parameters
numBits = length(bits);
symbDur = 1 / baudRate;
timeVec = 0:1/sampleFreq:numBits * symbDur - (1/sampleFreq);
% Compute phase shifts
phaseShift = zeros(1, numBits + 1);
for idx = 2:numBits+1
phaseShift(idx) = mod(phaseShift(idx-1) + ((pi * idx) / 2) * (diffEncBits(idx-1) - diffEncBits(idx)), 2 * pi);
end
phaseShift = phaseShift(2:end);
diffEncBits = diffEncBits(2:end);
% Generate MSK waveform
symbolIdx = floor(timeVec / symbDur) + 1;
signal = cos(2 * pi * (carrierFreq + diffEncBits(symbolIdx) / (4 * symbDur)) .* timeVec + phaseShift(symbolIdx));
end
% Function to perform MSK demodulation
function bitSeq = demodMSK(signal, carrierFreq, baudRate, sampleFreq)
% Recovers a binary bit sequence from an MSK-modulated signal
% Inputs:
% signal - MSK-modulated input signal
% carrierFreq - Carrier frequency
% baudRate - Symbol rate
% sampleFreq - Sampling frequency
% Outputs:
% bitSeq - Demodulated binary sequence
symbDur = 1 / baudRate;
samplesPerSymbol = round(symbDur * sampleFreq);
numSamples = length(signal);
% Generate reference MSK waveforms for bits 0 and 1
refWave1 = modulateMSK([1], carrierFreq, baudRate, sampleFreq);
refWave0 = modulateMSK([0], carrierFreq, baudRate, sampleFreq);
bitSeq = logical.empty;
% Demodulation using correlation
for startIdx = 1:samplesPerSymbol:numSamples
if startIdx + samplesPerSymbol > numSamples
break;
end
sampleSegment = signal(startIdx:startIdx+samplesPerSymbol-1);
% Compute cross-correlation with reference waveforms
corr1 = xcorr(sampleSegment, refWave1);
corr0 = xcorr(sampleSegment, refWave0);
% Compare correlation values to determine bit
if max(corr1) + abs(min(corr1)) > max(corr0) + abs(min(corr0))
bitSeq = [bitSeq, 1];
else
bitSeq = [bitSeq, 0];
end
end
end
Output
In Minimum Shift Keying (MSK), the two frequencies used for 0 and 1 depend on the carrier frequency \( f_c \) and the baud rate \( R_b \) (symbols per second).
Formula for MSK frequencies:
The two frequencies are given by:
\[ f_0 = f_c - \frac{1}{4T} \] \[ f_1 = f_c + \frac{1}{4T} \]where \( T = \frac{1}{\text{baud rate}} \) is the symbol duration.
Given values:
- Carrier frequency: \( f_c = 10 \) Hz
- Baud rate: \( R_b = 10 \) symbols/sec
- Symbol duration: \( T = \frac{1}{10} = 0.1 \) sec
Now, calculating the frequencies:
\[ f_0 = 10 - \frac{1}{4 \times 0.1} = 10 - \frac{1}{0.4} = 10 - 2.5 = 7.5 \text{ Hz} \] \[ f_1 = 10 + \frac{1}{4 \times 0.1} = 10 + 2.5 = 12.5 \text{ Hz} \]
Minimum Shift Keying (MSK) Simulator
Differences Between MSK and FSK
f₀ ≠ f₁
, the carrier switches frequency — but phase continuity is not maintained unless explicitly enforced. This causes a sudden jump in phase at the bit boundary. In MSK, the phase is not static or abruptly switching. It evolves linearly over time based on the bit value, ensuring continuity. For bit duration Tb
, the frequency deviation is: Δf = ±(1 / 4Tb)
[Read More in Detail ...]
Q & A and Summary
1. What is the mathematical representation of the MSK signal and what does it represent?
Answer: The MSK signal is mathematically represented as: $$ s(t) = a_I(t) \cos\left(\frac{\pi t}{2T}\right) \cos(\omega_c t) - a_Q(t) \sin\left(\frac{\pi t}{2T}\right) \sin(\omega_c t) $$ In this formula, \( a_I(t) \) and \( a_Q(t) \) encode the even and odd information respectively, using square pulses of duration \( 2T \). The \( \omega_c \) is the carrier angular frequency, and the terms involving cosine and sine functions describe how the signal's phase and frequency vary over time. This continuous-phase signal is essential for reducing spectral sidebands and interference.
2. How does the constant-modulus property of MSK help reduce distortion in communication systems?
Answer: The constant-modulus property of MSK ensures that the amplitude of the signal remains unchanged regardless of the phase. This is important because non-linear distortion in communication systems typically occurs when the signal's amplitude fluctuates. By maintaining a constant amplitude, MSK reduces the chances of distortion due to non-linearities in amplifiers and other components, thus ensuring cleaner signal transmission and better performance in systems that use non-linear power amplifiers.
3. What is Minimum Shift Keying (MSK) and how does it differ from OQPSK?
Answer: Minimum Shift Keying (MSK) is a type of continuous-phase frequency-shift keying. Unlike OQPSK, MSK encodes data using half sinusoidal pulses rather than square pulses. This leads to a constant-modulus signal, reducing distortion and spectral spread. While OQPSK also uses quadrature components, MSK offers improved signal quality by ensuring smoother phase transitions.
4. Why is the continuous-phase property of MSK important?
Answer: The continuous-phase property of MSK is crucial because it minimizes spectral sidebands. In traditional phase-shift keying schemes, abrupt phase shifts can cause wide sidebands, which interfere with adjacent channels. MSK's smooth and continuous phase changes ensure a narrower spectral occupancy, allowing for better utilization of the available bandwidth and reducing interference.
5. How does the frequency separation in MSK affect the modulation process?
Answer: The frequency separation in MSK ensures that the phase shift over a bit period is exactly ±Ï€/2. This specific frequency separation is what guarantees the smooth transitions between symbols, preventing abrupt phase changes. This also plays a critical role in maintaining the continuous-phase characteristic, which helps reduce spectral spreading and interference in the system.
6. Why is the phase modulation in MSK represented by \( \phi_k(t) = b(t) \frac{\pi t}{2T} + \phi_0 \)?
Answer: The phase modulation \( \phi_k(t) \) in MSK is represented as \( b(t) \frac{\pi t}{2T} + \phi_0 \) to ensure continuous, linear phase changes within each bit period. The term \( b(t) \) corresponds to the bit sequence, determining whether the phase shifts up or down. The factor \( \frac{\pi t}{2T} \) ensures that the phase modulation occurs smoothly over time, with no abrupt transitions, thus maintaining the continuous-phase property of MSK.
7. What makes MSK suitable for non-linear power amplifiers in communication systems?
Answer: MSK is suitable for non-linear power amplifiers because it has a constant-modulus signal. This means that the amplitude of the signal remains constant, regardless of the phase. Non-linear amplifiers work more efficiently when driven by signals with constant amplitude, as they avoid distortion that typically arises from varying amplitudes. This property of MSK allows for better power efficiency without compromising signal quality.