Skip to main content

SSB-SC Modulation and Demodulation


 

As we see in case of DSB-SC only sidebands are transmitted as they bear all informations about the signal. On the other hand, the two sidebands are identical and they carry same information. So, why not just send a single sideband and construct the other sideband from that. 

 

SSB-SC Modulator using Hilbert Transform

Single-sideband has the mathematical form of quadrature amplitude modulation (QAM) in the special case where one of the baseband waveforms is derived from the other, instead of being independent messages:

Sssb(t) = s(t).cos(2Ï€f0t) - (t).sin(2Ï€f0t)

Where s(t) is the message (real valued), (t) is the Hilbert transform, and f0 is the radio carrier frequency.

 

To understand this formula, we may express s(t) as real part of a complex valued function, with no loss of information.

s(t) = Re{sa(t)} = Re{s(t) + j.(t)}

where j represents the imaginary unit. sa(t) is the analytical representation of s(t), which means that it comprises only the positive-frequency components of s(t)

Sa(f) = S(f)        for f > 0

           = 0            for f < 0

Where Sa(f) and S(f) are the respective Fourier transforms of sa(t) and s(t).

Therefore the frequency-translated function Sa(f – f0) contains only one side of S(f). Since it also has only positive-frequency components, its inverse Fourier transform is the analytical representation of sssb(t).

 sssb(t) + ssb(t)  =  F -1 {Sa(f – f0)} = sa(t).e2Ï€f0t,

and again the real part of this expression causes no loss of information. With Eular’s formula to expand e2Ï€f0t , we obtain

sssb(t) = Re{sa(t).e2Ï€f0t}

         = Re {[ s(t) + j.(t)] . [cos(2Ï€f0t) + j.sin(2Ï€f0t)]}

         = s(t). cos(2Ï€f0t) - (t). sin(2Ï€f0t)

Coherent demodulation of sssb(t) to recover s(t) is the same as AM: multiply by cos(2Ï€f0t), and lowpass to remove the “double frequency” components around frequency 2f0. If the demodulating carrier is not is not in the correct phase (cosine phase here), then the demodulated signal will be some linear combination of s(t) and (t), which is usually acceptable in voice communications.

 

Lower sideband

s(t) can also be recovered as the real part of the complex-conjugate, sa*(t), which represents the negative frequency portion of S(f), when f0 is large enough that   S(f - f0) has no negative frequencies, the product sa*(t).e2Ï€f0t is another analytical signal, whose real part is the actual lower-sideband transmission.

sa*(t).e2Ï€f0t

         = slsb(t) +  lsb(t) 

    slsb(t) = Re{ sa*(t). e2Ï€f0t}

         = Re {[ s(t) + j.(t)] . [cos(2Ï€f0t) + j.sin(2Ï€f0t)]}

         = s(t). cos(2Ï€f0t) + (t). sin(2Ï€f0t)

 

The sum of the two sideband signals is:

susb(t) + slsb(t) = 2s(t).cos(2Ï€f0t)

which is the classic model of suppressed carrier double sideband AM.

 

One important characteristic of the analytical signal is that its spectral content lies in the positive Nyquist interval. This is because if we shift the imaginary part of our analytic (complex) signal by 90 degrees (+j) and add it to the real part, the negative frequencies will cancel while the positive frequencies will add. This results in a signal with no negative frequencies. Also, the magnitude of the frequency component in the complex signal is twice the magnitude of the frequency component in the real signal. This is similar to a one-sided spectrum, which contains the total signal power in the positive frequencies.

 

Other SSB-SC Modulators

Bandpass filtering

One method of producing an SSB-SC signal is to remove one of its sidebands via filtering, leaving only either the upper sideband (USB), and the sideband with the higher frequency, or less commonly the lower sideband (LSB), the sideband with lower frequency. Most often, the carrier is reduced or removed entirely (suppressed), being referred to in full as single sideband suppressed carrier (SSBSC).

Assuming both sidebands are symmetric, which is the case for a normal AM signal, no information is lost in the process.

 

Hartley modulator

Hartley modulator uses phasing to suppress the unwanted sideband. To generate an SSB signal with this method, two versions of the original signal are generated, mutually 900 out of phase for any single frequency within the operating bandwidth. Each one of these signals then modulates carrier waves (of one frequency) that are also 900 out of phase with each other. By either adding or subtracting the resulting signals, a lower or upper sideband signal results. A benefit is to allow an analytical expression for SSB signals, which can be used to understand effects such as synchronous detection of SSB.

 

In the above figure m(t) represents the message signal. And waveform of the message signal is represented as cos(êž·mt).

 

Shifting the baseband signal 900 out of phase cannot be done simply by delaying it, as it contains a large range of frequencies. In analog circuits, a wideband 90 degree phase difference network is used. The method was popular in the days of vacuum radios. Nowadays this method, utilizing the Hilbert transform to phase shift the baseband audio, can be done at low cost with digital circuitry. 

 

Weaver modulator

The Weaver modulator, uses only lowpass filters and quadrature mixers, and is a favoured method in digital implementations. In weaver’s method, the band of interest is first translated to be centered at zero, conceptually by modulating a complex exponential exp(jωt) with frequency in the middle of the voiceband, but implemented by a quadrature pair of sine and cosine modulators at the frequency (e.g. 2KHz). This complex signal or pair of real signals is then lowpass filtered to remove the undesired sideband that is not centered to zero. Then, the single sideband complex signal centered at zero is upconverted to a real signal, by another pair of quadrature mixers, to the desired center frequency.

 

SSB-SC Detector

The front end of an SSB receiver is similar to that of an AM or FM receiver, consisting of a superheterodyne RF front end that produces a frequency-shifted version of the radio frequency (RF) signal within a standard intermediate frequency (IF) band.

To recover the original signal from the IF SSB signal, the sideband must be frequency shifted to down its original range of baseband frequencies, by using a product detector which mixes it with the output of a beat frequency oscillator (BFO). In other words, it is just another stage of heterodyning. For this work, the BFO must be exactly adjusted.

In communications and electronic engineering, an intermediate frequency (IF) is created by mixing the carrier signal with a local oscillator signal in a process called heterodyning, resulting in a signal at the difference or beat frequency. Intermediate frequencies are used in superheterodyne radio receivers, in which an incoming signal is shifted to an IF for amplification before final detection is done.

A simple example 

A receiver is tuned to a Morse code signal, and the receiver’s intermediate frequency (IF) is fIF = 45000 Hz. That means Morse code’s dits (dots) and dahs (dashes) have become pulses of 45000 Hz signal, which is inaudible. To make them audible, the frequency needs to be shifted into audio range, for instance  faudio = 1000 Hz. To achieve that, the desired BFO frequency is fBFO = 44000 or 46000. Because it produces new signals at the sum and difference of the two signal frequencies.

 

Detection of an SSB signal

As an example, consider an IF SSB signal centered at frequency Fif = 45000 Hz. The baseband frequency it needs to be shifted to is Fb = 2000 Hz. The BFO output waveform is cos(2Ï€. fBFO . t). When the signal is multiplied by the BFO waveform, it shifts the signal to (Fif  +  Fbfo), and to | Fif  -  Fbfo |, which is known as the beat frequency or image frequency. The objective is to choose an FBFO  that results in | Fif  -  Fbfo | = Fb = 2000 Hz. The unwanted components at (Fif  +  Fbfo) can be removed by lowpass filter.

 

Advantages of SSB-SC over DSB-SC

  • SSB-SC uses half bandwidth of DSB-SC

 

Further Reading

  1. Comparisons between DSB-SC and SSB-SC
  2. DSB-SC Modulation and Demodulation 
  3. DSB-SC in MATLAB

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Hybrid Beamforming | Page 2

Beamforming Techniques Hybrid Beamforming... Page 1 | Page 2 | clear all; close all; clc; Nt = 64; Nr = 16; NtRF = 4; NrRF = 4; At both the transmitter and receiver ends, there are four RF chains only for a hybrid beamforming system. Alternatively, every 16 antenna elements on the transmitter side is connected to a single RF chain, while every 4 antenna elements on the receiver side are connected to a single RF chain. Mixers, amplifiers, and other critical wireless communication components make up the RF chain. Now, in the case of hybrid beamforming, there can be four different data streams between the transmitter and receiver, as both sides have four RF chains, each of which is accountable for a separate data stream. For Analog Beamforming: All 64 Tx antenna elements create a beam or focus the resultant correlated signal spread from adjacent antennas to a particular direction. Similarly, it may be used for beam...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

MATLAB Code for Channel Impulse Response

MATLAB Code for Channel Impulse Response (CIR) 📘 Overview & Theory 🧮 MATLAB Code 🤔 How does CIR affect the signal? 🛠️ How to Mitigate Channel Distortion? 📚 Further Reading MATLAB Script for Simulating CIR This MATLAB script allows you to generate and visualize the channel impulse response (CIR). You can choose to create a 'random' multi-path channel or a near-'ideal' single-path channel to understand their distinct characteristics. % User input for choosing the type of impulse response response_type = input('Enter "random" for random channel impulse response or "ideal" for near-ideal impulse response: ', 's'); if strcmpi(response_type, 'random') % Parameters for random impulse response num_taps = input('Enter the number of taps: '); % Number of taps in the channel d...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate a...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for ...

Antenna Gain-Combining Methods - EGC, MRC, SC, and RMSGC

📘 Overview 🧮 Equal gain combining (EGC) 🧮 Maximum ratio combining (MRC) 🧮 Selective combining (SC) 🧮 Root mean square gain combining (RMSGC) 🧮 Zero-Forcing (ZF) Combining 🧮 MATLAB Code 📚 Further Reading  There are different antenna gain-combining methods. They are as follows. 1. Equal gain combining (EGC) 2. Maximum ratio combining (MRC) 3. Selective combining (SC) 4. Root mean square gain combining (RMSGC) 5. Zero-Forcing (ZF) Combining  1. Equal gain combining method Equal Gain Combining (EGC) is a diversity combining technique in which the receiver aligns the phase of the received signals from multiple antennas (or channels) but gives them equal amplitude weight before summing. This means each received signal is phase-corrected to be coherent with others, but no scaling is applied based on signal strength or channel quality (unlike MRC). Mathematically, for received signa...

Ultra-Wideband | Positioning, Frequency Range, Power and AoA & AoD detection

Frequency Bands Ultra-Wideband... UWB functions with the signal's so-called Time of Flight rather than RSSI (Received Signal Strength Indication), which makes technology more precise and enables it to conduct extremely precise ranging measurements. This is in contrast to traditional radio technologies (like Bluetooth or Wi-Fi). Key Features of UWB Bands UWB in order to bring decimeter-level positioning to the market There is almost no interference with other radio communication systems Multipath signal propagation resistance  resistance to noise  Low-power transceiver required Ultra Wide Band or UWB comes under the  Super High Frequency Band (SHF) range, as SHF ranges from 3 to 30 GHz. UWB frequency range: 3.1 GHz to 10.6 GHz Ultra-wideband or UWB technology is used for high-speed short-range wireless communication protocol. Now, it is a globally accepted protocol used in Mobile Telephony, AirTags, Medical fields, and NFC (near-field co...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR v...