Skip to main content

DFTs-OFDM Radar using Zadoff-Chu Sequence for Radar-Communication Integration

 

Summary

Based on 
Umehira, 2025: Umehira, M. and Takeuchi, Y.. DFTs-OFDM Radar using Zadoff-Chu Sequence for Radar-Communication Integration. In 2025 International Conference on Computing, Networking and Communications (ICNC) (pp. 33-37). IEEE, 2025, February.
 

1. Introduction

The integration of radar and communication is vital in 5G NR, WLAN, and 6G. DFTs-OFDM radar using Zadoff-Chu (ZC) sequences offers:

  • Low PAPR
  • Excellent autocorrelation
  • Compatibility with communication frameworks

Resource sharing (e.g., OFDMA, CSMA-CA) enables flexible and efficient spectrum use.

2. Zadoff-Chu Sequence Fundamentals

\[ Z_C^u(n) = \begin{cases} \exp\left(-j\pi \frac{u n^2}{N}\right), & \text{if } N \text{ is even} \\ \exp\left(-j\pi \frac{u n(n+1)}{N}\right), & \text{if } N \text{ is odd} \end{cases} \]
  • N: sequence length
  • u: root index (coprime with N)
  • 0 ≤ n < N

These CAZAC sequences have ideal cyclic autocorrelation and constant envelope.

3. DFTs-OFDM Radar Signal Generation

Step 1: DFT Spreading

\[ Z_C^v(m) = \sum_{n=0}^{N-1} Z_C^u(n) \cdot \exp\left(-j \frac{2\pi m n}{N}\right) \]

Step 2: Zero Padding

\[ Z_C^w(k) = \begin{cases} Z_C^v(k), & 0 \leq k < \frac{N}{2} \\ 0, & \frac{N}{2} \leq k < K - \frac{N}{2} \\ Z_C^v(k - (K - N)), & K - \frac{N}{2} \leq k < K \end{cases} \]

Step 3: IFFT

\[ S(k) = \sum_{m=0}^{K-1} Z_C^w(m) \cdot \exp\left(j \frac{2\pi m k}{K}\right) \]

After filtering, this gives radar signal \( s(t) \) of duration \( T_s = N T_c \).

4. Radar Frame Structure

\[ r(t) = s(t+T_s) + \sum_{m=0}^{M-1} s(t - mT_s) + s(t - MT_s) \]

This structure preserves cyclic properties and supports Doppler estimation.

5. Correlation-Based Detection

\[ X(k) = \frac{1}{N} \sum_{n=0}^{N-1} r(nT_c - \tau) \cdot Z_C^{u*}(n - k) \]

Peak in \( |X(k)| \) implies target presence; delay \( \tau \) relates to range.

6. Radar Performance Metrics

6.1 Ranging Resolution

\[ \Delta R = \frac{c T_c}{2} \]

6.2 Max Detection Range

\[ R_{\text{max}} < \frac{c N T_c}{2} = \frac{c T_s}{2} \]
\[ R_{\text{max, practical}} \approx \frac{c T_s}{4} \]

6.3 Velocity Resolution and Maximum

\[ \Delta v = \frac{\lambda}{2 M T_s} \]
\[ v_{\text{max}} = \frac{\lambda}{4 T_s} \]

7. Simulation Insights

  • Narrower main lobe and reduced sidelobes with larger N
  • Doppler shifts impact only off-sample delays
\[ X(\tau) = \frac{\sin(\pi \tau / T_c)}{\pi \tau / T_c} \]

8. Conclusion

  • Supports 5G/6G compatibility
  • Low PAPR, configurable performance
  • Efficient spectrum and hardware use

Summary Table

ParameterExpressionImproved By
Range Resolution\( \Delta R = \frac{c T_c}{2} \)↓ Tc (↑ Bandwidth)
Max Detection Range\( R_{\text{max}} < \frac{c N T_c}{2} \)↑ N
Velocity Resolution\( \Delta v = \frac{\lambda}{2 M T_s} \)↑ M
Max Velocity\( v_{\text{max}} = \frac{\lambda}{4 T_s} \)↓ Ts


Further Reading

  1.  

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Constellation Diagrams of M-ary QAM | M-ary Modulation

๐Ÿ“˜ Overview of QAM ๐Ÿงฎ MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) ๐Ÿงฎ Online Simulator for M-ary QAM Constellations ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Constellation Diagrams of QAM configurations ... ๐Ÿงฎ MATLAB Code for 4-QAM ๐Ÿงฎ MATLAB Code for 16-QAM ๐Ÿงฎ MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) ๐Ÿงฎ Simulator for constellation diagrams of m-ary PSK ๐Ÿงฎ Simulator for constellation diagrams of m-ary QAM ๐Ÿงฎ Overview of Energy per Bit (Eb / N0) ๐Ÿงฎ Online Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory behind Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK QAM Unlike this, the M-ary PSK signal is modulated with a different phase-shifted version of the carrier signal and varying amplitude levels. Let me give an example for better comprehension. QAM = ASK +...

Comparing Baseband and Passband Implementations of ASK, FSK, and PSK

๐Ÿ“˜ Overview ๐Ÿงฎ Baseband and Passband Implementations of ASK, FSK, and PSK ๐Ÿงฎ Difference betwen baseband and passband ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Baseband and Passband ... ๐Ÿงฎ Baseband modulation techniques ๐Ÿงฎ Passband modulation techniques   Baseband modulation techniques are methods used to encode information signals onto a baseband signal (a signal with frequencies close to zero), allowing for efficient transmission over a communication channel. These techniques are fundamental in various communication systems, including wired and wireless communication. Here are some common baseband modulation techniques: Amplitude Shift Keying (ASK) [↗] : In ASK, the amplitude of the baseband signal is varied to represent different symbols. Binary ASK (BASK) is a common implementation where two different amplitudes represent binary values (0 and 1). ASK is simple but susceptible to noise...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Online Simulator for BER calculation of m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... ๐Ÿ“š Further Reading ๐Ÿ“‚ View Other Topics on M-ary QAM, M-ary PSK, QPSK ... ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary QAM ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER calculation of Alamouti Scheme ๐Ÿงฎ Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

๐Ÿ“˜ Comparisons among ASK, FSK, and PSK ๐Ÿงฎ Online Simulator for calculating Bandwidth of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK ๐Ÿ“š Further Reading ๐Ÿ“‚ View Other Topics on Comparisons among ASK, PSK, and FSK ... ๐Ÿงฎ Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. ๐Ÿงฎ MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ Online Simulator for ASK, FSK, and PSK Generation ๐Ÿงฎ Online Simulator for ASK, FSK, and PSK Constellation ๐Ÿงฎ Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate a...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator for calculating BER ๐Ÿงฎ MATLAB Codes for calculating theoretical BER ๐Ÿงฎ MATLAB Codes for calculating simulated BER ๐Ÿ“š Further Reading   BER vs. SNR denotes how many bits in error are received in a communication process for a particular Signal-to-noise (SNR) ratio. In most cases, SNR is measured in decibel (dB). For a typical communication system, a signal is often affected by two types of noises 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading In the case of additive white Gaussian noise (AWGN), random magnitude is added to the transmitted signal. On the other hand, Rayleigh fading (due to multipath) attenuates the different frequency components of a signal differently. A good signal-to-noise ratio tries to mitigate the effect of noise.  Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation The theoretical BER for binary ASK (BASK) in an AWGN channel is...

Constellation Diagrams of ASK, PSK, and FSK

๐Ÿ“˜ Overview of Energy per Bit (Eb / N0) ๐Ÿงฎ Online Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory behind Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... ๐Ÿงฎ Simulator for constellation diagrams of m-ary PSK ๐Ÿงฎ Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

๐Ÿ“˜ Overview & Theory of Pulse Amplitude Moduation (PAM) ๐Ÿงฎ MATLAB Code for Pulse Amplitude Modulation and Demodulation of Analog Signal and Digital Signal ๐Ÿงฎ Simulation results for comparison of PAM, PWM, PPM, DM, and PCM ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Pulse Amplitude Modulation ... ๐Ÿงฎ MATLAB Code for Pulse Amplitude Modulation and Demodulation of an Analog Signal (2) ๐Ÿงฎ MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data ๐Ÿงฎ Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM)   Pulse Amplitude Modulation (PAM) & Demodulation of an Analog Message Signal MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with per...

Difference between AWGN and Rayleigh Fading

๐Ÿ“˜ Introduction, AWGN, and Rayleigh Fading ๐Ÿงฎ Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the si...