Skip to main content

Ultra-Wideband | Positioning, Frequency Range, Power and AoA & AoD detection



UWB functions with the signal's so-called Time of Flight rather than RSSI (Received Signal Strength Indication), which makes technology more precise and enables it to conduct extremely precise ranging measurements. This is in contrast to traditional radio technologies (like Bluetooth or Wi-Fi).

Key Features of UWB Bands

  • UWB in order to bring decimeter-level positioning to the market
  • There is almost no interference with other radio communication systems
  • Multipath signal propagation resistance 
  • resistance to noise 
  • Low-power transceiver required


Ultra Wide Band or UWB comes under the Super High Frequency Band (SHF) range, as SHF ranges from 3 to 30 GHz.

UWB frequency range: 3.1 GHz to 10.6 GHz

Ultra-wideband or UWB technology is used for high-speed short-range wireless communication protocol. Now, it is a globally accepted protocol used in Mobile Telephony, AirTags, Medical fields, and NFC (near-field communication), and serves a variety of security services. etc. We need more spectral resources or bandwidth to meet the constantly expanding data traffic demands. On the other hand, wireless communication is gaining popularity in the industrial setting, particularly for industrial automation. The spectral resource of very high frequencies, such as ultra-wideband and millimeter wave, is huge. But unfortunately, it cannot be used with Wi-Fi to some limitations in UWB transmission.

In 1960, the ultra-wideband (UWB) was invented. This band is ideal for communication over short distances. As a result, it can be used for both indoor and short-range outdoor communication. Because of its larger bandwidth and reduced latency, it is suitable for industrial automation.


Here, in the above figure, it is shown that GSM uses a bandwidth of 200 KHz. But it uses maximum energy among the three compared communication bands to overcome the noise level. But in the case of UWB, it transmits less power for short-range communication. As here communication range is limited, so it hardly interacts with other networks. But we can experience high data rate communication here because the available bandwidth is huge.
What is the significance of Ultra Wide Band (UWB)

The difference between a communication band's highest and lowest frequencies is used to compute electronic communication bandwidth. The ratio of the highest frequency to the lowest operating frequency in a communication band is substantially higher in a wideband transmission. Similarly, the signal is described as a narrow band if the highest to lowest frequency ratio is close to one.

The highest operational frequency for UWB transmission is much higher than the lowest operating frequency. UWB signals are sent as narrow pulses ranging up to a few picoseconds. As a result of the narrower pulses, it implies operating at higher frequencies. As a result, there is plenty of scope for high bandwidth allocation because it is wideband.
Why Choose Ultra Wide Band (UWB)

There are several compelling reasons to use UWB for modern wireless communication. The following are the reasons:

1. Huge spectrum resource

2. When two UWB devices get close together, they begin to range.

3. High positional precision

4. Can detect angle of arrival (AoA) and angle of departure (AoD)


1. Huge spectrum resource:

UWB systems transmit signals in the form of pulse pattern radio-based technology in the time domain. UWB band's frequency span 3.1 to 10.6 GHz. We transfer very narrow pulses in the time domain, so it contains huge bandwidth. In the following paras, we've discussed about the energy efficiency of UWB. We've already discussed in the above para that ultra-wideband communication is wideband communication itself because its highest operating frequency is much higher than the lowest operating frequency. So, here available spectrum resources are huge.


2. Live tracking (positioning) Property of Ultra Wide Band (UWB):

UWB is used in tracking devices like the -- Apple Air-Tag, Samsung galaxy smart Tag plus, etc. Keyless entry technologies (e.g., RFID) or digital key technologies are adopting ultra wideband or UWB.

Currently, UWB operates in the 3–10 GHz spectrum. The positioning accuracy of this band is great. Because the wavelength is so short, it provides a higher detection resolution of objects. As a result, when two UWB devices get close enough, they start ranging. The ranging is done using time of flight (ToF), which is the amount of time it takes for packets to perform a round trip between initiator and responder devices. It can track devices in real-time, improving the connection's reliability.

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...

UGC-NET Electronic Science Previous Year Question Papers with Answer Keys and Full Explanations

    UGC-NET Electronic Science Question Paper With Answer Key Download Pdf [2023] Download Question Paper               See Answers   2025 | 2024 | 2023 | 2022 | 2021 | 2020 UGC-NET Electronic Science  2023 Answers with Explanations Q.115 (A) It is an AC bridge to measure frequency True. The Wien bridge is an AC bridge used for accurate frequency measurement . (B) It is a DC bridge to measure amplitude False. Wien Bridge works with AC signals , not DC. (C) It is used as frequency determining element True. In Wien bridge oscillators, the RC network sets the oscillation frequency . (D) It is used as band-pass filter Partially misleading. The Wien bridge network acts like a band-pass filter in the oscillator, but the bridge itself is not typically described this way. Exam questions usually mark this as False . (E) It is used as notch filter False. That is the Wien NOTCH bridge ,...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Constellation Diagram of ASK in Detail

A binary bit '1' is assigned a power level of E b \sqrt{E_b}  (or energy E b E_b ), while a binary bit '0' is assigned zero power (or no energy).   Simulator for Binary ASK Constellation Diagram SNR (dB): 15 Run Simulation Noisy Modulated Signal (ASK) Original Modulated Signal (ASK) Energy per bit (Eb) (Tb = bit duration): We know that all periodic signals are power signals. Now we’ll find the energy of ASK for the transmission of binary ‘1’. E b = ∫ 0 Tb (A c .cos(2П.f c .t)) 2 dt = ∫ 0 Tb (A c ) 2 .cos 2 (2П.f c .t) dt Using the identity cos 2 x = (1 + cos(2x))/2: = ∫ 0 Tb ((A c ) 2 /2)(1 + cos(4П.f c .t)) dt ...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR va...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 MATLAB Code s 📚 Further Reading For Doppler Delay or Multi-path Delay Coherence time T coh ∝ 1 / v max (For slow fading, coherence time T coh is greater than the signaling interval.) Coherence bandwidth W coh ∝ 1 / Ï„ max (For frequency-flat fading, coherence bandwidth W coh is greater than the signaling bandwidth.) Where: T coh = coherence time W coh = coherence bandwidth v max = maximum Doppler frequency (or maximum Doppler shift) Ï„ max = maximum excess delay (maximum time delay spread) Notes: The notation v max −1 and Ï„ max −1 indicate inverse proportionality. Doppler spread refers to the range of frequency shifts caused by relative motion, determining T coh . Delay spread (or multipath delay spread) determines W coh . Frequency-flat fading occurs when W coh is greater than the signaling bandwidth. Coherence Bandwidth Coherence bandwidth is...