Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Computer Networks Lab 🚀

Ultra-Wideband | Positioning, Frequency Range, Power and AoA & AoD detection



UWB functions with the signal's so-called Time of Flight rather than RSSI (Received Signal Strength Indication), which makes technology more precise and enables it to conduct extremely precise ranging measurements. This is in contrast to traditional radio technologies (like Bluetooth or Wi-Fi).

Key Features of UWB Bands

  • UWB in order to bring decimeter-level positioning to the market
  • There is almost no interference with other radio communication systems
  • Multipath signal propagation resistance 
  • resistance to noise 
  • Low-power transceiver required


Ultra Wide Band or UWB comes under the Super High Frequency Band (SHF) range, as SHF ranges from 3 to 30 GHz.

UWB frequency range: 3.1 GHz to 10.6 GHz

Ultra-wideband or UWB technology is used for high-speed short-range wireless communication protocol. Now, it is a globally accepted protocol used in Mobile Telephony, AirTags, Medical fields, and NFC (near-field communication), and serves a variety of security services. etc. We need more spectral resources or bandwidth to meet the constantly expanding data traffic demands. On the other hand, wireless communication is gaining popularity in the industrial setting, particularly for industrial automation. The spectral resource of very high frequencies, such as ultra-wideband and millimeter wave, is huge. But unfortunately, it cannot be used with Wi-Fi to some limitations in UWB transmission.

In 1960, the ultra-wideband (UWB) was invented. This band is ideal for communication over short distances. As a result, it can be used for both indoor and short-range outdoor communication. Because of its larger bandwidth and reduced latency, it is suitable for industrial automation.


Here, in the above figure, it is shown that GSM uses a bandwidth of 200 KHz. But it uses maximum energy among the three compared communication bands to overcome the noise level. But in the case of UWB, it transmits less power for short-range communication. As here communication range is limited, so it hardly interacts with other networks. But we can experience high data rate communication here because the available bandwidth is huge.
What is the significance of Ultra Wide Band (UWB)

The difference between a communication band's highest and lowest frequencies is used to compute electronic communication bandwidth. The ratio of the highest frequency to the lowest operating frequency in a communication band is substantially higher in a wideband transmission. Similarly, the signal is described as a narrow band if the highest to lowest frequency ratio is close to one.

The highest operational frequency for UWB transmission is much higher than the lowest operating frequency. UWB signals are sent as narrow pulses ranging up to a few picoseconds. As a result of the narrower pulses, it implies operating at higher frequencies. As a result, there is plenty of scope for high bandwidth allocation because it is wideband.
Why Choose Ultra Wide Band (UWB)

There are several compelling reasons to use UWB for modern wireless communication. The following are the reasons:

1. Huge spectrum resource

2. When two UWB devices get close together, they begin to range.

3. High positional precision

4. Can detect angle of arrival (AoA) and angle of departure (AoD)


1. Huge spectrum resource:

UWB systems transmit signals in the form of pulse pattern radio-based technology in the time domain. UWB band's frequency span 3.1 to 10.6 GHz. We transfer very narrow pulses in the time domain, so it contains huge bandwidth. In the following paras, we've discussed about the energy efficiency of UWB. We've already discussed in the above para that ultra-wideband communication is wideband communication itself because its highest operating frequency is much higher than the lowest operating frequency. So, here available spectrum resources are huge.


2. Live tracking (positioning) Property of Ultra Wide Band (UWB):

UWB is used in tracking devices like the -- Apple Air-Tag, Samsung galaxy smart Tag plus, etc. Keyless entry technologies (e.g., RFID) or digital key technologies are adopting ultra wideband or UWB.

Currently, UWB operates in the 3–10 GHz spectrum. The positioning accuracy of this band is great. Because the wavelength is so short, it provides a higher detection resolution of objects. As a result, when two UWB devices get close enough, they start ranging. The ranging is done using time of flight (ToF), which is the amount of time it takes for packets to perform a round trip between initiator and responder devices. It can track devices in real-time, improving the connection's reliability.

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance,...

How to use MATLAB Simulink

  MATLAB Simulink is a popular add-on of MATLAB. Here, you can use different blocks like modulator, demodulator, AWGN channel, etc. And you can do experiments on your own.       Steps Go to the 'Simulink' tab at the top navbar of MATLAB. If not found, click on the add-on tab, search 'Simulink,' and then click on it to add. Once you installed the simulation, click the 'new' tap at the top left corner. Then, search the required blocks in the 'Simulink library.' Then, drag it to the editor space. You can double-click on the blocks to see the input parameters Then, connect the blocks by dragging a line from one block's output terminal to another block's input. If the connection is complete, click the 'run' tab in the middle of the top navbar.   After clicking on the run button, your Simulink is ready. Then double-click on any block to see the output   The following block diagram is an example of the MATLAB simulation of 'QPSK...

MATLAB Code for Pulse Width Modulation (PWM) and Demodulation

   Pulse Width Modulation (PWM) MATLAB Script clc; clear all; close all; fs=30; %frequency of the sawtooth signal fm=3; %frequency of the message signal sampling_frequency = 10e3; a=0.5; % amplitide t=0:(1/sampling_frequency):1; %sampling rate of 10kHz sawtooth=2*a.*sawtooth(2*pi*fs*t); %generating a sawtooth wave subplot(4,1,1); plot(t,sawtooth); % plotting the sawtooth wave title('Comparator Wave'); msg=a.*sin(2*pi*fm*t); %generating message wave subplot(4,1,2); plot(t,msg); %plotting the sine message wave title('Message Signal'); for i=1:length(sawtooth) if (msg(i)>=sawtooth(i)) pwm(i)=1; %is message signal amplitude at i th sample is greater than %sawtooth wave amplitude at i th sample else pwm(i)=0; end end subplot(4,1,3); plot(t,pwm,'r'); title('PWM'); axis([0 1 0 1.1]); %to keep the pwm visible during plotting. %% Demodulation % Demodulation: Measure the pulse width to reconstruct the signal demodulated_signal = zeros(size(msg)); for i = 1:leng...

MATLAB Code for QAM (Quadrature Amplitude Modulation)

  One of the best-performing modulation techniques is QAM [↗] . Here, we modulate the symbols by varying the carrier signal's amplitude and phase in response to the variation in the message signal (or voltage variation). So, we may say that QAM is a combination of phase and amplitude modulation. Additionally, it performs better than ASK or PSK [↗] . In fact, any constellation for any type of modulation, signal set (or, symbols) is structured in a way that prevents them from interacting further by being distinct by phase, amplitude, or frequency. MATLAB Script (for 4-QAM) % This code is written by SalimWirelss.Com % This is an example of 4-QAM. Here constellation size is 4 % or total number of symbols/signals is 4 % We need 2 bits once to represent four constellation points % QAM modulation is the combination of Amplitude modulation plus % Phase Modulation. We map the decimal value of the input symbols, i.e., % 00, 01, 10, 11 to 1 + 1i, -1 + 1i, 1 - 1i, and -1 - 1i, respectively. cl...

Constellation Diagrams of M-ary PSK | M-ary Modulation

Constellation Diagrams QPSK, M-PSK, M-QAM ... What is the difference between Bit and Symbol in the perspective of transmission? Symbols use bandwidth more efficiently than bits. For example, in the case of QPSK, one symbol or signal waveform is represented by 2 bits. Hence symbol rate is one-half of the bit rate. As a result, it occupies half bandwidth compared to the BPSK waveform. We know the primary purpose of modulation [↗] is to multiplex data. Here multiplexing is done so that there is less interference between parallel data streams. Suppose there is a communication channel; we can transmit a single data stream simultaneously. But if we send a symbol instead of a bit, we can send more than 1 bit at a time. In ASK modulation, we assign two amplitude levels to a signal where a higher level is represented by binary '1' and another level as '0'. For BFSK, we apply phase shift in signal (for example, 0 phase shift for consecutive binary ...

MATLAB Code for ASK, FSK, and PSK

ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for Amplitude Shift Keying (ASK) % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration fc = 10; % Carrier frequency N = 10; % Number of bits % Generate carrier signal t = 0:Tb/100:1; carrier_signal = sqrt(2/Tb) * sin(2*pi*fc*t); % Generate message signal rng(10); % Set random seed for reproducibility binary_data = rand(1, N); % Generate random binary data t_start = 0; t_end = Tb; for i = 1:N t = [t_start:0.01:t_end]; % Generate message signal if binary_data(i) > 0.5 binary_data(i) = 1; message_signal = ones(1, length(t)); else binary_data(i) = 0; message_signal = zeros(1, length(t)); end % Store message signal message(i,:) = message_signal; % Modulate message with carrier ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

Coherence Bandwidth and Coherence Time

  Coherence Bandwidth Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics. coherence bandwidth is  The inverse of Doppler spread delay time, or any spread delay time due to fading in general.  The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel. The two are related by the following formulae: Coherence bandwidth = 1/(delay spread time) Or, Coherence Bandwidth = 1/(root-mean-square delay spread time) (Coherence bandwidth in Hertz) For instance, the coherence bandwidth is 2 MHz when the delay spread is {1/(2*10^6)} = 500 ns in a household indoor environment. For narrowband approximation, Coherence Bandwidth = 1/root-mean-square delay spread time Coherence bandwidth is a measure of the frequency spread over which a wir...