Skip to main content

5g Availability by Cities Worldwide | Does your city have a 5G network?



Country Cities
 USA 296+
 China 356+
 Philippines 98+
 South Korea 85+
 Canada 84+
 Spain 71+
 Italy 65+
 Germany 58+
 The United Kingdom 57+
 Saudi Arabia 48+
 Afghanistan 
 Albania 
 Algeria 
 Andorra 
 Angola 
 Antigua 
 and 
 Barbuda 
 Argentina 
 Armenia 
 Australia 
 Austria 
 Azerbaijan 
 The 
 Bahamas 
 Bahrain 
 BangladeshTrials are ongoing in Dhaka and Tungipara.
 Barbados 
 Belarus 
 Belgium 
 Belize 
 Benin 
 Bhutan 
 Bolivia 
 Bosnia 
 and 
 Herzegovina 
 Botswana 
 Brazil 
 Brunei 
 Bulgaria 
 Burkina 
 Faso 
 Burundi 
 Cambodia 
 Cameroon 
 Cape 
 Verde 
 Central 
 African 
 Republic 
 Chad 
 Chile 
 Colombia 
 Comoros 
 Republic 
 of 
 the 
 Congo, 
 Democratic 
 Republic 
 of 
 the 
 Congo, 
 Costa 
 Rica 
 Cote 
 d'Ivoire 
 Croatia 
 Cuba 
 Cyprus 
 Czech 
 Republic 
 Denmark 
 Djibouti 
 Dominica 
 Dominican 
 Republic 
 East 
 Timor 
 (Timor-Leste) 
 Ecuador 
 Egypt 
 El 
 Salvador 
 Equatorial 
 Guinea 
 Eritrea 
 Estonia 
 Ethiopia 
 Fiji 
 Finland 
 France 
 Gabon 
 The 
 Gambia 
 Georgia 
 Ghana 
 Greece 
 Grenada 
 Guatemala 
 Guinea 
 Guinea-Bissau 
 Guyana 
 Haiti 
 Honduras 
 Hungary 
 Iceland 
 Indiasoon in 13 cities (Delhi, Kolkata, ...
 Indonesia 
 Iran 
 Iraq 
 Ireland 
 Israel 
 Jamaica 
 Japan 
 Jordan 
 Kazakhstan 
 Kenya 
 Kiribati 
 North 
 Korea 
 Kosovo 
 Kuwait 
 Kyrgyzstan 
 Laos 
 Latvia 
 Lebanon 
 Lesotho1+ (Maseru, etc.)
 Liberia 
 Libya 
 Liechtenstein 
 Lithuania 
 Luxembourg 
 Macedonia 
 Madagascar 
 Malawi 
 Malaysia 
 Maldives 
 Mali 
 Malta 
 Marshall 
 Islands 
 Mauritania 
 Mauritius 
 Mexico 
 Federated 
 States 
 of 
 Micronesia, 
 Moldova 
 Monaco 
 Mongolia 
 Montenegro 
 Morocco 
 Mozambique 
 Myanmar 
 (Burma) 
 Namibia 
 Nauru 
 Nepal 
 Netherlands 
 New 
 zealand 
 Nicaragua 
 Niger 
 Nigeria 
 Norway 
 Oman 
 Pakistan 
 Palau 
 Panama 
 Papua 
 New 
 Guinea 
 Paraguay 
 Peru 
 Poland 
 Portugal 
 Qatar15+  (Doha, Umm Şalāl Muḩammad, ...
 Romania 
 Russia 
 Rwanda 
 Saint 
 Kitts 
 and 
 Nevis 
 Saint 
 Lucia 
 Saint 
 Vincent 
 and 
 the 
 Grenadines 
 Samoa 
 San 
 Marino 
 Sao 
 Tome 
 and 
 Principe 
 Senegal 
 Serbia 
 Seychelles 
 Sierra 
 Leone 
 Singapore 
 Slovakia 
 Slovenia 
 Solomon 
 Islands 
 Somalia 
 South 
 Africa 
 South 
 Sudan 
 Sri 
 Lanka 
 Sudan 
 Suriname 
 Swaziland 
 Sweden 
 Switzerland 
 Syria 
 Taiwan 
 Tajikistan 
 Tanzania 
 Thailand 
 Togo 
 Tonga 
 Trinidad 
 and 
 Tobago 
 Tunisia 
 Turkey 
 Turkmenistan 
 Tuvalu 
 Uganda 
 Ukraine 
 United 
 Arab 
 Emirates 
 Uruguay 
 Uzbekistan 
 Vanuatu 
 Vatican 
 City 
 (Holy 
 See) 
 Venezuela 
 Vietnam 
 Yemen 
 Zambia 
 Zimbabwe 

India: Delhi, Kolkata, Mumbai, Chennai, Gurugram, Ahmedabad, Chandigarh, Gandhinagar, Hyderabad, Jamnagar, Bengaluru, Lucknow, and Pune

Qatar: Doha, Umm Şalāl Muḩammad, Ar Rayyān, Al Wakrah, Al Khawr, Ash Shaḩānīyah, Umm Sa‘īd, Dukhān, Madīnat ash Shamāl, Al Wukayr, Ar Ru’ays, Umm Bāb, Al Ghuwayrīyah, Fuwayri, Al Jumaylīyahţ


#News about 5G


People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

MATLAB code for MSK

 Copy the MATLAB Code from here % The code is developed by SalimWireless.com clc; clear; close all; % Define a bit sequence bitSeq = [0, 1, 0, 0, 1, 1, 1, 0, 0, 1]; % Perform MSK modulation [modSignal, timeVec] = modulateMSK(bitSeq, 10, 10, 10000); % Plot the modulated signal subplot(2,1,1); samples = 1:numel(bitSeq); stem(samples, bitSeq); title('Original message signal'); xlabel('Time (s)'); ylabel('Amplitude'); % Plot the modulated signal subplot(2,1,2); samples = 1:10000; plot(samples / 10000, modSignal(1:10000)); title('MSK modulated signal'); xlabel('Time (s)'); ylabel('Amplitude'); % Perform MSK demodulation demodBits = demodMSK(modSignal, 10, 10, 10000); % Function to perform MSK modulation function [signal, timeVec] = modulateMSK(bits, carrierFreq, baudRate, sampleFreq) % Converts a binary bit sequence into an MSK-modulated signal % Inputs: % bits - Binary input sequence % carrierFreq - Carri...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the s...

Constellation Diagrams of ASK, PSK, and FSK

BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams SNR (dB): 15 Add AWGN Noise Modulation Type BPSK BFSK ...

Fundamentals of Channel Estimation

Channel Estimation Techniques Channel Estimation is an auto-regressive process that may be performed with a number of iterations. There are commonly three types of channel estimation approaches. 1. Pilot estimation  2. Blind estimation  3. Semi-blind estimation. For Channel Estimation,  CIR [↗] is used. The amplitudes of the impulses decrease over time and are not correlated. For example, y(n) = h(n) * x(n) + w(n) where y(n) is the received signal, x(n) is the sent signal, and w(n) is the additive white gaussian noise At the next stage, h(n+1) = a*h(n) + w(n) The channel coefficient will be modified as stated above at the subsequent stage. The scaling factor "a" determines the impulse's amplitude, whereas "h(n+1)" represents the channel coefficient at the following stage. Pilot Estimation Method To understand how a communication medium is currently behaving, a channel estimate is necessary. In order to monitor a channel's behavior in practice communication ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

Difference between AWGN and Rayleigh Fading

Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the signal through any type of channel (here, it is a wireless channel or wireless medium). Due to multi-paths the channel impulse response (h) changes. And multi-paths cause Rayleigh fa...

Constellation Diagram of FSK in Detail

  Binary bits '0' and '1' can be mapped to 'j' and '1' to '1', respectively, for Baseband Binary Frequency Shift Keying (BFSK) . Signals are in phase here. These bits can be mapped into baseband representation for a number of uses, including power spectral density (PSD) calculations. For passband BFSK transmission, we can modulate signal 'j' with a lower carrier frequency and signal '1' with a higher carrier frequency while transmitting over a wireless channel. Let's assume we are transmitting carrier signal fc1 for the transmission of binary bit '1' and carrier signal fc2 for the transmission of binary bit '0'. Simulator for 2-FSK Constellation Diagram Simulator for 2-FSK Constellation Diagram SNR (dB): 15 Add AWGN Noise Run Simulation ...

Gaussian minimum shift keying (GMSK)

Dive into the fascinating world of GMSK modulation, where continuous phase modulation and spectral efficiency come together for robust communication systems! Core Process of GMSK Modulation Phase Accumulation (Integration of Filtered Signal) After applying Gaussian filtering to the Non-Return-to-Zero (NRZ) signal, we integrate the smoothed NRZ signal over time to produce a continuous phase signal: θ(t) = ∫ 0 t m filtered (τ) dτ This integration is crucial for avoiding abrupt phase transitions, ensuring smooth and continuous phase changes. Phase Modulation The next step involves using the phase signal to modulate a high-frequency carrier wave: s(t) = cos(2πf c t + θ(t)) Here, f c is the carrier frequency, and s(t) represents the continuous-phase modulated carrier wave. Quadrature Modulation (Optional) ...