Skip to main content

What is the Step Size in FFT?

 

In FFT (Fast Fourier Transform), the step size refers to the spacing between consecutive points in the output data after performing the transform. It's often determined by the sampling rate of the signal. The step size is crucial for accurate frequency representation, and smaller step sizes provide finer frequency resolution in the resulting frequency domain representation.


Step Size of a Signal in the Time Domain (in general)

Suppose you have a signal sampled at 1000 Hz (sampling rate) for a duration of 1 second. The step size, or the time difference between consecutive samples, is then given by the inverse of the sampling rate:

Step size = 1 / Sampling rate = 1 / 1000 Hz = 0.001 seconds

 

General Frequency Resolution:

Sampling frequency fs​=1000Hz

Duration T= 1 second

Number of samples N=fs⋅T=1000⋅1=1000

 Î”f=1 / T

Δf=1 / 1 second = 1 Hz

 

Frequency Domain Step Size in FFT

Step Size in the Frequency Domain

The step size in the frequency domain refers to the spacing between adjacent frequency bins in the FFT output. It is determined by the signal's sampling rate and the size of the FFT:

Δf = fs / N

Where:

  • Δf: Frequency step size (frequency resolution).
  • fs: Sampling rate (Hz).
  • N: FFT size (number of bins).

Total Bandwidth

The total bandwidth covered by the FFT is determined by the sampling rate and the Nyquist theorem:

Total Bandwidth = fs / 2

Frequencies above the Nyquist frequency (fs/2) cannot be represented due to aliasing.

Frequency Step Size after FFT

Combining the above, the frequency step size (bin width) in the FFT output is:

Δf = fs / (2N)

 

Suppose:

  • Sampling frequency: Hz

  • FFT size:

  • Then:

    Δf=10005121.953 Hz

So, your FFT bins are spaced about 1.953 Hz apart.


Key Observations:

  • Smaller Δf results in higher frequency resolution.
  • To achieve smaller Δf, increase the FFT size (N) or the signal's duration (T).
  • Total bandwidth is inversely proportional to the number of bins (N).

Time Domain Step Size in FFT

 Time step (seconds) = Hop size / fs (samples)
 
Suppose:

    Sampling frequency fs ​= 1000 Hz

    FFT window length = 512 samples

    Hop size = 256 samples (i.e., 50% overlap)

Then:

    Each FFT is calculated on a 512-sample window

    The window shifts forward by 256 samples

    Time step size = 256 / 1000​ = 0.256 seconds

So, a new FFT is computed every 0.256 seconds of the signal.
 

MATLAB Code

% The code is developed by SalimWireless.Com


clc;
clear all;
close all;


% Parameters
fs = 1000; % Sampling frequency (Hz)
T = 1; % Duration (seconds)
N1 = 256; % FFT size for coarse resolution
N2 = 1024; % FFT size for fine resolution
t = 0:1/fs:T-1/fs; % Time vector


% Signal with multiple frequency components
f1 = 50; % Frequency 1 (Hz)
f2 = 60; % Frequency 2 (Hz)
f3 = 200; % Frequency 3 (Hz)
signal = sin(2*pi*f1*t) + sin(2*pi*f2*t) + sin(2*pi*f3*t);


% FFT with coarse resolution (N1)
fft_coarse = fft(signal, N1);
frequencies_coarse = (0:N1-1)*(fs/N1); % Frequency vector
magnitude_coarse = abs(fft_coarse);


% FFT with fine resolution (N2)
fft_fine = fft(signal, N2);
frequencies_fine = (0:N2-1)*(fs/N2); % Frequency vector
magnitude_fine = abs(fft_fine);


% Plotting
figure;


% Coarse Resolution Plot
subplot(2, 1, 1);
plot(frequencies_coarse(1:N1/2), magnitude_coarse(1:N1/2));
title('FFT with Coarse Resolution (N = 256) where step size is 3.906');
xlabel('Frequency (Hz)');
ylabel('Magnitude');
grid on;


% Fine Resolution Plot
subplot(2, 1, 2);
plot(frequencies_fine(1:N2/2), magnitude_fine(1:N2/2));
title('FFT with Fine Resolution (N = 1024) where step size is 0.977');
xlabel('Frequency (Hz)');
ylabel('Magnitude');
grid on;

Output






Copy the MATLAB Code above from here

Further Reading

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Calculation of SNR from FFT bins in MATLAB

📘 Overview 🧮 MATLAB Code for Estimation of SNR from FFT bins of a Noisy Signal 🧮 MATLAB Code for Estimation of Signal-to-Noise Ratio from Power Spectral Density Using FFT and Kaiser Window Periodogram from real signal data 📚 Further Reading   Here, you can find the SNR of a received signal from periodogram / FFT bins using the Kaiser operator. The beta (β) parameter characterizes the Kaiser window, which controls the trade-off between the main lobe width and the side lobe level in the frequency domain. For that you should know the sampling rate of the signal.  The Kaiser window is a type of window function commonly used in signal processing, particularly for designing finite impulse response (FIR) filters and performing spectral analysis. It is a general-purpose window that allows for control over the trade-off between the main lobe width (frequency resolution) and side lobe levels (suppression of spectral leakage). The Kaiser window is defined...

MIMO Channel Matrix | Rank and Condition Number

MIMO / Massive MIMO MIMO Channel Matrix | Rank and Condition...   The channel matrix in wireless communication is a matrix that describes the impact of the channel on the transmitted signal. The channel matrix can be used to model the effects of the atmospheric or underwater environment on the signal, such as the absorption, reflection or scattering of the signal by surrounding objects. When addressing multi-antenna communication, the term "channel matrix" is used. Let's assume that only one TX and one RX are in communication and there's no surrounding object. Here, in our case, we can apply the proper threshold condition to a received signal and get the original transmitted signal at the RX side. However, in real-world situations, we see signal path blockage, reflections, etc.,  (NLOS paths [↗]) more frequently. The obstruction is typically caused by building walls, etc. Multi-antenna communication was introduced to address this issue. It makes diversity app...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 Coherence Time Calculator 🧮 Relationship between Coherence Time and Delay Spread 🧮 MATLAB Code to find Relationship between Coherence Time and delay Spread 📚 Further Reading   Coherence Bandwidth Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics. coherence bandwidth is  The inverse of Doppler spread delay time, or any spread delay time due to fading in general.  The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel. The two are related by the following formulae: Coherence bandwidth = 1/(delay spread time) Or, Coherence Bandwidth = 1/(root-mean-square delay spread time) (Coherence bandwidth in Hertz) For instance, the coherence bandwidth is...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for i...

What are Precoding and Combining Weights / Matrices in a MIMO Beamforming System

MIMO / Massive MIMO Beamforming Techniques Precoding and Combining Weights...   Figure:  configuration of single-user digital precoder for millimeter  Wave massive MIMO system Precoding and combining are two excellent ways to send and receive signals over a multi-antenna communication process, respectively (i.e., MIMO antenna communication ). The channel matrix is the basis of both the precoding and combining matrices. Precoding matrices are typically used on the transmitter side and combining matrixes on the receiving side. The two matrices allow us to generate multiple simultaneous data streams between the transmitter and receiver. The nature of the data streams is also orthogonal. That helps decrease or cancel (theoretically) interference between any two data streams. The channel matrix is first properly diagonalized. Diagonalization is the process of transforming any matrix into an equivalent diagon...