Skip to main content

What is the Step Size in FFT?

 

In FFT (Fast Fourier Transform), the step size refers to the spacing between consecutive points in the output data after performing the transform. It's often determined by the sampling rate of the signal. The step size is crucial for accurate frequency representation, and smaller step sizes provide finer frequency resolution in the resulting frequency domain representation.


Step Size of a Signal in the Time Domain (in general)

Suppose you have a signal sampled at 1000 Hz (sampling rate) for a duration of 1 second. The step size, or the time difference between consecutive samples, is then given by the inverse of the sampling rate:

Step size = 1 / Sampling rate = 1 / 1000 Hz = 0.001 seconds

 

General Frequency Resolution:

Sampling frequency fs​=1000Hz

Duration T= 1 second

Number of samples N=fs⋅T=1000⋅1=1000

 Î”f=1 / T

Δf=1 / 1 second = 1 Hz

 

Frequency Domain Step Size in FFT

Step Size in the Frequency Domain

The step size in the frequency domain refers to the spacing between adjacent frequency bins in the FFT output. It is determined by the signal's sampling rate and the size of the FFT:

Δf = fs / N

Where:

  • Δf: Frequency step size (frequency resolution).
  • fs: Sampling rate (Hz).
  • N: FFT size (number of bins).

Total Bandwidth

The total bandwidth covered by the FFT is determined by the sampling rate and the Nyquist theorem:

Total Bandwidth = fs / 2

Frequencies above the Nyquist frequency (fs/2) cannot be represented due to aliasing.

Frequency Step Size after FFT

Combining the above, the frequency step size (bin width) in the FFT output is:

Δf = fs / (2N)

 

Suppose:

  • Sampling frequency: Hz

  • FFT size:

  • Then:

    Δf=10005121.953 Hz

So, your FFT bins are spaced about 1.953 Hz apart.


Key Observations:

  • Smaller Δf results in higher frequency resolution.
  • To achieve smaller Δf, increase the FFT size (N) or the signal's duration (T).
  • Total bandwidth is inversely proportional to the number of bins (N).

Time Domain Step Size in FFT

 Time step (seconds) = Hop size / fs (samples)
 
Suppose:

    Sampling frequency fs ​= 1000 Hz

    FFT window length = 512 samples

    Hop size = 256 samples (i.e., 50% overlap)

Then:

    Each FFT is calculated on a 512-sample window

    The window shifts forward by 256 samples

    Time step size = 256 / 1000​ = 0.256 seconds

So, a new FFT is computed every 0.256 seconds of the signal.
 

MATLAB Code

% The code is developed by SalimWireless.Com


clc;
clear all;
close all;


% Parameters
fs = 1000; % Sampling frequency (Hz)
T = 1; % Duration (seconds)
N1 = 256; % FFT size for coarse resolution
N2 = 1024; % FFT size for fine resolution
t = 0:1/fs:T-1/fs; % Time vector


% Signal with multiple frequency components
f1 = 50; % Frequency 1 (Hz)
f2 = 60; % Frequency 2 (Hz)
f3 = 200; % Frequency 3 (Hz)
signal = sin(2*pi*f1*t) + sin(2*pi*f2*t) + sin(2*pi*f3*t);


% FFT with coarse resolution (N1)
fft_coarse = fft(signal, N1);
frequencies_coarse = (0:N1-1)*(fs/N1); % Frequency vector
magnitude_coarse = abs(fft_coarse);


% FFT with fine resolution (N2)
fft_fine = fft(signal, N2);
frequencies_fine = (0:N2-1)*(fs/N2); % Frequency vector
magnitude_fine = abs(fft_fine);


% Plotting
figure;


% Coarse Resolution Plot
subplot(2, 1, 1);
plot(frequencies_coarse(1:N1/2), magnitude_coarse(1:N1/2));
title('FFT with Coarse Resolution (N = 256) where step size is 3.906');
xlabel('Frequency (Hz)');
ylabel('Magnitude');
grid on;


% Fine Resolution Plot
subplot(2, 1, 2);
plot(frequencies_fine(1:N2/2), magnitude_fine(1:N2/2));
title('FFT with Fine Resolution (N = 1024) where step size is 0.977');
xlabel('Frequency (Hz)');
ylabel('Magnitude');
grid on;

Output






Copy the MATLAB Code above from here

Further Reading

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Theoretical BER vs SNR for binary ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Codes 📚 Further Reading Theoretical BER vs SNR for Amplitude Shift Keying (ASK) The theoretical Bit Error Rate (BER) for binary ASK depends on how binary bits are mapped to signal amplitudes. For typical cases: If bits are mapped to 1 and -1, the BER is: BER = Q(√(2 × SNR)) If bits are mapped to 0 and 1, the BER becomes: BER = Q(√(SNR / 2)) Where: Q(x) is the Q-function: Q(x) = 0.5 × erfc(x / √2) SNR : Signal-to-Noise Ratio N₀ : Noise Power Spectral Density Understanding the Q-Function and BER for ASK Bit '0' transmits noise only Bit '1' transmits signal (1 + noise) Receiver decision threshold is 0.5 BER is given by: P b = Q(0.5 / σ) , where σ = √(N₀ / 2) Using SNR = (0.5)² / N₀, we get: BER = Q(√(SNR / 2)) Theoretical BER vs ...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ... UGC-NET (Electronics Science, Subject code: 88) UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Question With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Question With Answer Key Download Pdf [December 2019] UGC Net Elec...

Relationship between Gaussian and Rayleigh distributions

📘 Introduction, Gaussian Distribution, Relationship Between Gaussian and Rayleigh Distribution 🧮 How to mitigate Rayleigh fading? 🧮 Equalizer to reduce Rayleigh Fading (or Multi-path Effects) in MATLAB 🧮 MATLAB Code for Effects of AWGN and Rayleigh Fading in Wireless Communication 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh distributions ...   The Rayleigh distribution in classical fading models (like wireless communication) arises from modeling the real and imaginary parts of a complex baseband signal as independent, zero-mean Gaussian random variables — under specific assumptions . 1. Gaussian Distribution  The Gaussian distribution has a lot of applications in wireless communication. Since noise in wireless communication systems is unpredictable, we frequently assume that it has a Gaussian distribution...

Simulation of ASK, FSK, and PSK using MATLAB Simulink

📘 Overview 🧮 How to use MATLAB Simulink 🧮 Simulation of ASK using MATLAB Simulink 🧮 Simulation of FSK using MATLAB Simulink 🧮 Simulation of PSK using MATLAB Simulink 🧮 Simulator for ASK, FSK, and PSK 🧮 Digital Signal Processing Simulator 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying b...