Skip to main content

What is the Step Size in FFT?

 

In FFT (Fast Fourier Transform), the step size refers to the spacing between consecutive points in the output data after performing the transform. It's often determined by the sampling rate of the signal. The step size is crucial for accurate frequency representation, and smaller step sizes provide finer frequency resolution in the resulting frequency domain representation.


Step Size of a Signal in the Time Domain (in general)

Suppose you have a signal sampled at 1000 Hz (sampling rate) for a duration of 1 second. The step size, or the time difference between consecutive samples, is then given by the inverse of the sampling rate:

Step size = 1 / Sampling rate = 1 / 1000 Hz = 0.001 seconds

 

General Frequency Resolution:

Sampling frequency fs​=1000Hz

Duration T= 1 second

Number of samples N=fs⋅T=1000⋅1=1000

 ฮ”f=1 / T

ฮ”f=1 / 1 second = 1 Hz

 

Frequency Domain Step Size in FFT

Step Size in the Frequency Domain

The step size in the frequency domain refers to the spacing between adjacent frequency bins in the FFT output. It is determined by the signal's sampling rate and the size of the FFT:

ฮ”f = fs / N

Where:

  • ฮ”f: Frequency step size (frequency resolution).
  • fs: Sampling rate (Hz).
  • N: FFT size (number of bins).

Total Bandwidth

The total bandwidth covered by the FFT is determined by the sampling rate and the Nyquist theorem:

Total Bandwidth = fs / 2

Frequencies above the Nyquist frequency (fs/2) cannot be represented due to aliasing.

Frequency Step Size after FFT

Combining the above, the frequency step size (bin width) in the FFT output is:

ฮ”f = fs / (2N)

 

Suppose:

  • Sampling frequency: Hz

  • FFT size:

  • Then:

    ฮ”f=10005121.953 Hz

So, your FFT bins are spaced about 1.953 Hz apart.


Key Observations:

  • Smaller ฮ”f results in higher frequency resolution.
  • To achieve smaller ฮ”f, increase the FFT size (N) or the signal's duration (T).
  • Total bandwidth is inversely proportional to the number of bins (N).

Time Domain Step Size in FFT

 Time step (seconds) = Hop size / fs (samples)
 
Suppose:

    Sampling frequency fs ​= 1000 Hz

    FFT window length = 512 samples

    Hop size = 256 samples (i.e., 50% overlap)

Then:

    Each FFT is calculated on a 512-sample window

    The window shifts forward by 256 samples

    Time step size = 256 / 1000​ = 0.256 seconds

So, a new FFT is computed every 0.256 seconds of the signal.
 

MATLAB Code

% The code is developed by SalimWireless.Com


clc;
clear all;
close all;


% Parameters
fs = 1000; % Sampling frequency (Hz)
T = 1; % Duration (seconds)
N1 = 256; % FFT size for coarse resolution
N2 = 1024; % FFT size for fine resolution
t = 0:1/fs:T-1/fs; % Time vector


% Signal with multiple frequency components
f1 = 50; % Frequency 1 (Hz)
f2 = 60; % Frequency 2 (Hz)
f3 = 200; % Frequency 3 (Hz)
signal = sin(2*pi*f1*t) + sin(2*pi*f2*t) + sin(2*pi*f3*t);


% FFT with coarse resolution (N1)
fft_coarse = fft(signal, N1);
frequencies_coarse = (0:N1-1)*(fs/N1); % Frequency vector
magnitude_coarse = abs(fft_coarse);


% FFT with fine resolution (N2)
fft_fine = fft(signal, N2);
frequencies_fine = (0:N2-1)*(fs/N2); % Frequency vector
magnitude_fine = abs(fft_fine);


% Plotting
figure;


% Coarse Resolution Plot
subplot(2, 1, 1);
plot(frequencies_coarse(1:N1/2), magnitude_coarse(1:N1/2));
title('FFT with Coarse Resolution (N = 256) where step size is 3.906');
xlabel('Frequency (Hz)');
ylabel('Magnitude');
grid on;


% Fine Resolution Plot
subplot(2, 1, 2);
plot(frequencies_fine(1:N2/2), magnitude_fine(1:N2/2));
title('FFT with Fine Resolution (N = 1024) where step size is 0.977');
xlabel('Frequency (Hz)');
ylabel('Magnitude');
grid on;

Output






Copy the MATLAB Code above from here

Further Reading

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

OFDM Symbols and Subcarriers Explained

This article explains how OFDM (Orthogonal Frequency Division Multiplexing) symbols and subcarriers work. It covers modulation, mapping symbols to subcarriers, subcarrier frequency spacing, IFFT synthesis, cyclic prefix, and transmission. Step 1: Modulation First, modulate the input bitstream. For example, with 16-QAM , each group of 4 bits maps to one QAM symbol. Suppose we generate a sequence of QAM symbols: s0, s1, s2, s3, s4, s5, …, s63 Step 2: Mapping Symbols to Subcarriers Assume N sub = 8 subcarriers. Each OFDM symbol in the frequency domain contains 8 QAM symbols (one per subcarrier): Mapping (example) OFDM symbol 1 → s0, s1, s2, s3, s4, s5, s6, s7 OFDM symbol 2 → s8, s9, s10, s11, s12, s13, s14, s15 … OFDM sym...

Constellation Diagrams of ASK, PSK, and FSK

๐Ÿ“˜ Overview of Energy per Bit (Eb / N0) ๐Ÿงฎ Online Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory behind Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK ๐Ÿ“š Further Reading ๐Ÿ“‚ Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... ๐Ÿงฎ Simulator for constellation diagrams of m-ary PSK ๐Ÿงฎ Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Online Simulator for BER calculation of m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... ๐Ÿ“š Further Reading ๐Ÿ“‚ View Other Topics on M-ary QAM, M-ary PSK, QPSK ... ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary QAM ๐Ÿงฎ Online Simulator for Constellation Diagram of m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER calculation of Alamouti Scheme ๐Ÿงฎ Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Coherence Bandwidth and Coherence Time

๐Ÿงฎ Coherence Bandwidth ๐Ÿงฎ Coherence Time ๐Ÿงฎ MATLAB Code s ๐Ÿ“š Further Reading Coherence Bandwidth Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics. Coherence bandwidth is inversely related to the delay spread time (e.g., RMS delay spread). The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel due to multipath. The two are related by the following approximation: Coherence Bandwidth ≈ 1/(delay spread time) Or, Coherence Bandwidth ≈ 1/(root-mean-square delay spread time) (Coherence bandwidth in Hertz) For instance, if the root-mean-square delay spread is 500 ns (i.e., {1/(2*10^6)} seconds), the coherence bandwidth is approximately 2 MHz (1 / 500e-9) in ...

Pulse Position Modulation (PPM)

Pulse Position Modulation (PPM) is a type of signal modulation in which M message bits are encoded by transmitting a single pulse within one of 2แดน possible time positions within a fixed time frame. This process is repeated every T seconds , resulting in a data rate of M/T bits per second . PPM is a form of analog modulation where the position of each pulse is varied according to the amplitude of the sampled modulating signal , while the amplitude and width of the pulses remain constant . This means only the timing (position) of the pulse carries the information. PPM is commonly used in optical and wireless communications , especially where multipath interference is minimal or needs to be reduced. Because the information is carried in timing , it's more robust in some noisy environments compared to other modulation schemes. Although PPM can be used for analog signal modulation , it is also used in digital communications where each pulse position represents a symbol or bit...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

๐Ÿงฎ MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together ๐Ÿงฎ MATLAB Code for M-ary QAM ๐Ÿงฎ MATLAB Code for M-ary PSK ๐Ÿ“š Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for i...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer...

Theoretical BER vs SNR for BPSK

Theoretical Bit Error Rate (BER) vs Signal-to-Noise Ratio (SNR) for BPSK in AWGN Channel Let’s simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel. Key Points Fig. 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗] BPSK Modulation Transmits one of two signals: +√Eb or −√Eb , where Eb is the energy per bit. These signals represent binary 0 and 1 . AWGN Channel The channel adds Gaussian noise with zero mean and variance N₀/2 (where N₀ is the noise power spectral density). Receiver Decision The receiver decides if the received signal is closer to +√Eb (for bit 0) or −√Eb (for bit 1) . Bit Error Rat...