Skip to main content

What is the Step Size in FFT?

 

In FFT (Fast Fourier Transform), the step size refers to the spacing between consecutive points in the output data after performing the transform. It's often determined by the sampling rate of the signal. The step size is crucial for accurate frequency representation, and smaller step sizes provide finer frequency resolution in the resulting frequency domain representation.


Step Size of a Signal in the Time Domain (in general)

Suppose you have a signal sampled at 1000 Hz (sampling rate) for a duration of 1 second. The step size, or the time difference between consecutive samples, is then given by the inverse of the sampling rate:

Step size = 1 / Sampling rate = 1 / 1000 Hz = 0.001 seconds

 

General Frequency Resolution:

Sampling frequency fs​=1000Hz

Duration T= 1 second

Number of samples N=fs⋅T=1000⋅1=1000

 Î”f=1 / T

Δf=1 / 1 second = 1 Hz

 

Frequency Domain Step Size in FFT

Step Size in the Frequency Domain

The step size in the frequency domain refers to the spacing between adjacent frequency bins in the FFT output. It is determined by the signal's sampling rate and the size of the FFT:

Δf = fs / N

Where:

  • Δf: Frequency step size (frequency resolution).
  • fs: Sampling rate (Hz).
  • N: FFT size (number of bins).

Total Bandwidth

The total bandwidth covered by the FFT is determined by the sampling rate and the Nyquist theorem:

Total Bandwidth = fs / 2

Frequencies above the Nyquist frequency (fs/2) cannot be represented due to aliasing.

Frequency Step Size after FFT

Combining the above, the frequency step size (bin width) in the FFT output is:

Δf = fs / (2N)

 

Suppose:

  • Sampling frequency: Hz

  • FFT size:

  • Then:

    Δf=10005121.953 Hz

So, your FFT bins are spaced about 1.953 Hz apart.


Key Observations:

  • Smaller Δf results in higher frequency resolution.
  • To achieve smaller Δf, increase the FFT size (N) or the signal's duration (T).
  • Total bandwidth is inversely proportional to the number of bins (N).

Time Domain Step Size in FFT

 Time step (seconds) = Hop size / fs (samples)
 
Suppose:

    Sampling frequency fs ​= 1000 Hz

    FFT window length = 512 samples

    Hop size = 256 samples (i.e., 50% overlap)

Then:

    Each FFT is calculated on a 512-sample window

    The window shifts forward by 256 samples

    Time step size = 256 / 1000​ = 0.256 seconds

So, a new FFT is computed every 0.256 seconds of the signal.
 

MATLAB Code

% The code is developed by SalimWireless.Com


clc;
clear all;
close all;


% Parameters
fs = 1000; % Sampling frequency (Hz)
T = 1; % Duration (seconds)
N1 = 256; % FFT size for coarse resolution
N2 = 1024; % FFT size for fine resolution
t = 0:1/fs:T-1/fs; % Time vector


% Signal with multiple frequency components
f1 = 50; % Frequency 1 (Hz)
f2 = 60; % Frequency 2 (Hz)
f3 = 200; % Frequency 3 (Hz)
signal = sin(2*pi*f1*t) + sin(2*pi*f2*t) + sin(2*pi*f3*t);


% FFT with coarse resolution (N1)
fft_coarse = fft(signal, N1);
frequencies_coarse = (0:N1-1)*(fs/N1); % Frequency vector
magnitude_coarse = abs(fft_coarse);


% FFT with fine resolution (N2)
fft_fine = fft(signal, N2);
frequencies_fine = (0:N2-1)*(fs/N2); % Frequency vector
magnitude_fine = abs(fft_fine);


% Plotting
figure;


% Coarse Resolution Plot
subplot(2, 1, 1);
plot(frequencies_coarse(1:N1/2), magnitude_coarse(1:N1/2));
title('FFT with Coarse Resolution (N = 256) where step size is 3.906');
xlabel('Frequency (Hz)');
ylabel('Magnitude');
grid on;


% Fine Resolution Plot
subplot(2, 1, 2);
plot(frequencies_fine(1:N2/2), magnitude_fine(1:N2/2));
title('FFT with Fine Resolution (N = 1024) where step size is 0.977');
xlabel('Frequency (Hz)');
ylabel('Magnitude');
grid on;

Output






Copy the MATLAB Code above from here

Further Reading

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

MATLAB Code for Rms Delay Spread

RMS delay spread is crucial when you need to know how much the signal is dispersed in time due to multipath propagation, the spread (variance) around the average. In high-data-rate systems like LTE, 5G, or Wi-Fi, even small time dispersions can cause ISI. RMS delay spread is directly related to the amount of ISI in such systems. RMS Delay Spread [↗] Delay Spread Calculator Enter delays (ns) separated by commas: Enter powers (dB) separated by commas: Calculate   The above calculator Converts Power to Linear Scale: It correctly converts the power values from decibels (dB) to a linear scale. Calculates Mean Delay: It accurately computes the mean excess delay, which is the first moment of the power delay profile. Calculates RMS Delay Spread: It correctly calculates the RMS delay spread, defined as the square root of the second central moment of the power delay profile.   MATLAB Code  clc...

FFT Magnitude and Phase Spectrum using MATLAB

📘 Overview & Theory 🧮 MATLAB Code 1 🧮 MATLAB Code 2 📚 Further Reading   MATLAB Code  % Developed by SalimWireless.Com clc; clear; close all; % Configuration parameters fs = 10000; % Sampling rate (Hz) t = 0:1/fs:1-1/fs; % Time vector creation % Signal definition x = sin(2 * pi * 100 * t) + cos(2 * pi * 1000 * t); % Calculate the Fourier Transform y = fft(x); z = fftshift(y); % Create frequency vector ly = length(y); f = (-ly/2:ly/2-1) / ly * fs; % Calculate phase while avoiding numerical precision issues tol = 1e-6; % Tolerance threshold for zeroing small values z(abs(z) < tol) = 0; phase = angle(z); % Plot the original Signal figure; subplot(3, 1, 1); plot(t, x, 'b'); xlabel('Time (s)'); ylabel('|y|'); title('Original Messge Signal'); grid on; % Plot the magnitude of the Fourier Transform subplot(3, 1, 2); stem(f, abs(z), 'b'); xlabel('Frequency (Hz)'); ylabel('|y|'); title('Magnitude o...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...

Power Spectral Density Calculation Using FFT in MATLAB

📘 Overview 🧮 Steps to calculate the PSD of a signal 🧮 MATLAB Codes 📚 Further Reading Power spectral density (PSD) tells us how the power of a signal is distributed across different frequency components, whereas Fourier Magnitude gives you the amplitude (or strength) of each frequency component in the signal. Steps to calculate the PSD of a signal Firstly, calculate the first Fourier transform (FFT) of a signal Then, calculate the Fourier magnitude of the signal The power spectrum is the square of the Fourier magnitude To calculate power spectrum density (PSD), divide the power spectrum by the total number of samples and the frequency resolution. {Frequency resolution = (sampling frequency / total number of samples)} Sampling frequency (fs): The rate at which the continuous-time signal is sampled (in Hz). ...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 MATLAB Code s 📚 Further Reading For Doppler Delay or Multi-path Delay Coherence time T coh ∝ 1 / v max (For slow fading, coherence time T coh is greater than the signaling interval.) Coherence bandwidth W coh ∝ 1 / Ï„ max (For frequency-flat fading, coherence bandwidth W coh is greater than the signaling bandwidth.) Where: T coh = coherence time W coh = coherence bandwidth v max = maximum Doppler frequency (or maximum Doppler shift) Ï„ max = maximum excess delay (maximum time delay spread) Notes: The notation v max −1 and Ï„ max −1 indicate inverse proportionality. Doppler spread refers to the range of frequency shifts caused by relative motion, determining T coh . Delay spread (or multipath delay spread) determines W coh . Frequency-flat fading occurs when W coh is greater than the signaling bandwidth. Coherence Bandwidth Coherence bandwidth is...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...