Skip to main content

Difference between AWGN and Rayleigh Fading



1. Introduction

Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗], are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way. 



Fig: Rayleigh Fading due to multi-paths

Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading.

y = h*x + n ... (i)

Symbol '*' represents convolution.

The transmitted signal x is multiplied by the channel coefficient or channel impulse response (h) in the equation above, and the symbol "n" stands for the white Gaussian noise that is added to the signal through any type of channel (here, it is a wireless channel or wireless medium). Due to multi-paths the channel impulse response (h) changes. And multi-paths cause Rayleigh fading.


2. Additive White Gaussian Noise (AWGN)

The mathematical effect involves adding Gaussian-distributed noise to the modulated signal. The received signal y(t) is given by:

y(t) = x(t) + n(t)

Where:
x(t) is the modulated signal.
n(t) is the AWGN.

The effect of AWGN is to add random variations to the amplitude of the signal, which can lead to erroneous detection of the transmitted symbols. The SNR (signal-to-noise ratio) plays a crucial role in determining the quality of demodulation, with higher SNR values leading to better performance.

We measure SNR at the receiver side due to AWGN for a variety of reasons. For additional information about the Gaussian Noise and its PDF, click here. Because the power spectrum density of this type of noise is frequency independent, the term "white Gaussian noise" has been used here.


3. Rayleigh Fading

Mathematically, Rayleigh fading can be represented as a complex Gaussian random variable with zero mean and a certain variance. The received signal y(t) in the presence of Rayleigh fading can be represented as:

y(t) = h * x(t) + n(t)

Where:

This symbol '*' represents convolution

h is the complex fading coefficient, representing the channel gain and phase shift.

x(t) is the modulated signal.

n(t) is the noise.

The fading coefficient h introduces random amplitude and phase variations to the signal. Due to the randomness of h, the received signal's amplitude will experience fluctuations, impacting the detection of transmitted symbols. The actual fading distribution might vary depending on the specific channel characteristics.


We will now talk about Rayleigh fading. We'll start by talking about what fading actually is. Any sort of wireless communication uses many paths (LOS or NLOS) [↗] to carry the signal from the transmitter to the receiver. To learn more about multi-paths (MPCs) in wireless communication, click here [↗]. Due to various reflections or diffractions from building walls, vegetation, etc., as they pass through multi-paths, the resulting signal at the receiver may be additive or destructive. Diversity, which is achieved by multi-antenna transmission and reception, is the best method to deal with this scenario. The topic " Diversity" will be covered in a later article.

The Rayleigh fading coefficient, or h in equation (i) above, is a complex coefficient that depends on the signal's attenuation and delay spread.

The Rayleigh distribution describes how the amplitudes of channel coefficients vary over a range. If the amplitude of the channel coefficient, a = |h|, then the distribution of the channel coefficient,

fA(a) = 2ae-a^2,  a>=0

On the other hand, the phases of the fading channel coefficient are distributed over the range of 0 degrees to 2ะŸ (or, 2*pi).


Simulator for the Effect of AWGN and Rayleigh Fading on a BPSK Signal

This simulation below represents a standard wireless communication system featuring 4 multipath components, each separated by 1 millisecond, and employing BPSK modulation at a data rate of 100 bps














MATLAB Code to demonstrate the effects of AWGN and Rayleigh fading on wireless communication channels

 

 Output

 

 
Fig 1: Effects of AWGN and Rayleigh Fading in Wireless Communication
 
 

Equalizer to reduce Rayleigh Fading or Multi-path Effects

 







MATLAB Code to overcome the effect of the Rayleigh Fading with Receiver Diversity Gain

 

Output

 
 
Fig 2: BER vs SNR for Equal Gain Combining (EGC)





Q. Why does Rayleigh fading occur?
A. Due to multi-path

Q. Which kind of fading is Rayleigh fading, exactly?

A. Small-scale fading

Q. What other type of fading is there?

A. Large-scale fading

Q. When deep fade occurs?

You can notice a sudden drop in signal power while performing a signal analysis or spectrum analysis. If the signals that reach the receiver are fully destructive, as we have already discussed, this phenomenon is known as "deep fading." Such a condition may also arise as a result of signal shadowing, etc. [Read More about Fading: Slow & Fast Fading and Large & Small Scale Fading, etc.]

 

Further Reading 


People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Simulator for BER calculation of m-ary QAM and m-ary PSK ๐Ÿงฎ Simulator for Constellation Diagram of m-ary QAM ๐Ÿงฎ Simulator for Constellation Diagram of m-ary PSK ๐Ÿงฎ MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... ๐Ÿงฎ MATLAB Code for BER calculation of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for BER calculation of Alamouti Scheme ๐Ÿงฎ Different approaches to calculate BER vs SNR ๐Ÿ“š Further Reading Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)...

Constellation Diagrams of ASK, PSK, and FSK

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory ๐Ÿงฎ MATLAB Codes ๐Ÿงฎ Simulator for constellation diagrams of m-ary PSK ๐Ÿงฎ Simulator for constellation diagrams of m-ary QAM ๐Ÿ“š Further Reading BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

https://www.salimwireless.com/2024/11/constellation-diagram-in-matlab.html ๐Ÿ“˜ Overview ๐Ÿงฎ Simulator ๐Ÿงฎ Noise Sensitivity, Bandwidth, Complexity, etc. ๐Ÿงฎ MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK ๐Ÿงฎ MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK ๐Ÿงฎ Simulator for ASK, FSK, and PSK Generation ๐Ÿงฎ Simulator for ASK, FSK, and PSK Constellation ๐Ÿงฎ Some Questions and Answers ๐Ÿ“š Further Reading Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate are same for binary ASK, FSK, and PSK. Select Modulation Type: ASK FSK PSK Baud Rat...

Channel Impulse Response (CIR)

Channel Impulse Response (CIR) ๐Ÿ“˜ Overview & Theory ๐Ÿ“˜ How does the channel impulse response affect the signal? ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Wireless Signal Processing CIR, Doppler Shift & Gaussian Random Variable  The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal.   What is the Channel Impulse Response (CIR) ? It describes the behavior of a communication channel in response to an impulse signal. In signal processing,  an impulse signal has zero amplitude at all other times and amplitude  ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this.  ...(i) ฮด( t) now has a very intriguing characteristic. The answer is 1 when the Fourier Transform of  ฮด( t) is calculated. As a result, all frequencies ar...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

๐Ÿ“˜ Overview & Theory ๐Ÿงฎ MATLAB Code 1 ๐Ÿงฎ MATLAB Code 2 ๐Ÿงฎ MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data ๐Ÿงฎ Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM) ๐Ÿ“š Further Reading   Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitu...

Alamouti Scheme for 2x2 MIMO in MATLAB

๐Ÿ“˜ Overview & Theory ๐Ÿงฎ MATLAB Code for Alamouti Scheme ๐Ÿงฎ MATLAB Code for BER vs. SNR for Alamouti Scheme ๐Ÿงฎ Alamouti Scheme Transmission Table ๐Ÿ“š Further Reading    Read about the Alamouti Scheme first MATLAB Code for Alamouti's Precoding Matrix for 2 X 2 MIMO % Clear any existing data and figures clc; clear; close all; % Define system parameters transmitAntennas = 2; % Number of antennas at the transmitter receiveAntennas = 2; % Number of antennas at the receiver symbolCount = 1000000; % Number of symbols to transmit SNR_dB = 15; % Signal-to-Noise Ratio in decibels % Generate random binary data for transmission rng(10); % Set seed for reproducibility transmitData = randi([0, 1], transmitAntennas, symbolCount); % Perform Binary Phase Shift Keying (BPSK) modulation modulatedSymbols = 1 - 2 * transmitData; % Define Alamouti's Precoding Matrix precodingMatrix = [1 1; -1i 1i]; % Encode and transmit data using Alamouti scheme transmittedSym...

OFDM for 4G & 5G

๐Ÿ“˜ Overview ๐Ÿ“˜ Example: (OFDM using QPSK) ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading   Orthogonal Frequency Division Multiplexing When a signal with high bandwidth traverses through a medium, it tends to disperse more compared to a signal with lower bandwidth. A high-bandwidth signal comprises a wide range of frequency components. Each frequency component may interact differently with the transmission medium due to factors such as attenuation, dispersion, and distortion. OFDM combats the high-bandwidth frequency selective channel by dividing the original signal into multiple orthogonal multiplexed narrowband signals. In this way it, overcomes the inter-symbol interferences (ISI) issue. Block Diagram     ‘k’ indicates kth position in a input symbol N is the number of subcarriers   Example: (OFDM using QPSK) 1.        Input Parameters: N   Number of Input bits: 128 Number of subcarriers (FFT length): 64 ...