Skip to main content

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

 

Pulse Amplitude Modulation (PAM) & Demodulation

MATLAB Script

clc;

clear all;

close all;

fm= 10; % frequency of the message signal

fc= 100; % frequency of the carrier signal

fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor)

t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz)

m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal)

c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc

s=m.*c; % modulated signal (multiplication of element by element)

subplot(4,1,1);

plot(t,m);

title('Message signal');

xlabel ('Time');

ylabel('Amplitude');

subplot(4,1,2);

plot(t,c);

title('Carrier signal');

xlabel('Time');

ylabel('Amplitude');

subplot(4,1,3);

plot(t,s);

title('Modulated signal');

xlabel('Time');

ylabel('Amplitude');

%demdulated

d=s.*c; % At receiver, received signal is multiplied by carrier signal

filter=fir1(200,fm/fs,'low'); % low-pass FIR filter which order is 200

% here fm is the cut-off frequency and the fs is the sampling frequency

original_t_signal=conv(filter,d); % convolution of demodulated signal with filter %coefficient

t1=0:1/(length(original_t_signal)-1):1;

subplot(4,1,4);

plot(t1,original_t_signal);

title('demodulated signal');

xlabel('time');

ylabel('amplitude');

 

 Output

 

Copy the code from here

 


Another Code for Pulse Amplitude Modulation

MATLAB Script

 clc;
clear;
close all;

% Parameters
messageFrequency = 2;   % Message frequency in Hz
carrierFrequency = 20;  % Carrier frequency in Hz
samplingFrequency = 1000; % Sampling frequency in Hz
duration = 1;           % Signal duration in seconds
A = 1;                  % Amplitude of the signals

% Time vector
t = 0:1/samplingFrequency:duration;

% Message signal (sinusoidal)
messageSignal = A * sin(2 * pi * messageFrequency * t);

% Carrier signal (square wave)
carrierSignal = A * square(2 * pi * carrierFrequency * t);

% PAM signal
pamSignal = messageSignal .* (carrierSignal > 0);

% Plotting
figure;
subplot(3,1,1);
plot(t, messageSignal);
title('Message Signal');
xlabel('Time (s)');
ylabel('Amplitude');

subplot(3,1,2);
plot(t, carrierSignal);
title('Carrier Signal');
xlabel('Time (s)');
ylabel('Amplitude');

subplot(3,1,3);
plot(t, pamSignal);
title('PAM Signal');
xlabel('Time (s)');
ylabel('Amplitude');

Copy the Code from here

 

Pulse Amplitude Modulation (PAM) & Demodulation for Digital Data

% The code is written by SalimWireless.Com
clc;
clear;
close all;


% PAM Modulation and Demodulation Example


% Parameters
M = 8; % PAM order (8-PAM)
numSymbols = 100; % Number of symbols to transmit
Fs = 1000; % Sampling frequency
T = 1; % Symbol duration


% Generate random data
data = randi([0 M-1], 1, numSymbols); % Random data symbols


% PAM Modulation
% Map the data symbols to PAM levels
pamLevels = linspace(-M + 1, M - 1, M); % PAM levels
modulatedSignal = pamLevels(data + 1); % Map data to PAM levels


% Create a time vector
t = 0:1/Fs:T*numSymbols-1/Fs;


% Upsample and create PAM signal
upsampledSignal = zeros(1, length(t));
for i = 1:numSymbols
upsampledSignal((i-1)*Fs+1:i*Fs) = modulatedSignal(i);
end


% Add some noise
snr = 20; % Signal-to-noise ratio
noisySignal = awgn(upsampledSignal, snr, 'measured');


% PAM Demodulation
% Sample the noisy signal at symbol rate
receivedSymbols = noisySignal(1:Fs:end);


% Map received symbols to nearest PAM level
demodulatedData = zeros(1, numSymbols);
for i = 1:numSymbols
[~, demodulatedData(i)] = min(abs(receivedSymbols(i) - pamLevels));
end


% Plotting
figure;
subplot(4,1,1);
stem(data);
title('Original Data');
xlabel('Time (s)');
ylabel('Amplitude');


subplot(4,1,2);
plot(t, upsampledSignal);
title('Transmitted PAM Signal');
xlabel('Time (s)');
ylabel('Amplitude');


subplot(4,1,3);
plot(t, noisySignal);
title('Received Noisy PAM Signal');
xlabel('Time (s)');
ylabel('Amplitude');


subplot(4,1,4);
stem(demodulatedData);
title('Demodulated Data');
xlabel('Symbol Index');
ylabel('PAM Level');
grid on;


% Display results
disp('Original Data:');
disp(data);
disp('Demodulated Data:');
disp(demodulatedData);

Output






Copy the MATLAB Code from here



Also read about

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

MATLAB code for MSK

 Copy the MATLAB Code from here % The code is developed by SalimWireless.com clc; clear; close all; % Define a bit sequence bitSeq = [0, 1, 0, 0, 1, 1, 1, 0, 0, 1]; % Perform MSK modulation [modSignal, timeVec] = modulateMSK(bitSeq, 10, 10, 10000); % Plot the modulated signal subplot(2,1,1); samples = 1:numel(bitSeq); stem(samples, bitSeq); title('Original message signal'); xlabel('Time (s)'); ylabel('Amplitude'); % Plot the modulated signal subplot(2,1,2); samples = 1:10000; plot(samples / 10000, modSignal(1:10000)); title('MSK modulated signal'); xlabel('Time (s)'); ylabel('Amplitude'); % Perform MSK demodulation demodBits = demodMSK(modSignal, 10, 10, 10000); % Function to perform MSK modulation function [signal, timeVec] = modulateMSK(bits, carrierFreq, baudRate, sampleFreq) % Converts a binary bit sequence into an MSK-modulated signal % Inputs: % bits - Binary input sequence % carrierFreq - Carri...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Simulator for m-ary QAM and m-ary PSK 🧮 MATLAB Codes 📚 Further Reading Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance,...

Constellation Diagrams of ASK, PSK, and FSK

BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams SNR (dB): 15 Add AWGN Noise Modulation Type BPSK BFSK ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

BER performance of QPSK with BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc

   Compare the BER performance of QPSK with other modulation schemes (e.g.,  BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc) under similar conditions. MATLAB Code clear all; close all; % Set parameters for QAM snr_dB = -20:2:20; % SNR values in dB qam_orders = [4, 16, 64, 256]; % QAM modulation orders % Loop through each QAM order and calculate theoretical BER figure; for qam_order = qam_orders     % Calculate theoretical BER using berawgn for QAM     ber_qam = berawgn(snr_dB, 'qam', qam_order);     % Plot the results for QAM     semilogy(snr_dB, ber_qam, 'o-', 'DisplayName', sprintf('%d-QAM', qam_order));     hold on; end % Set parameters for QPSK EbNoVec_qpsk = (-20:20)'; % Eb/No range for QPSK SNRlin_qpsk = 10.^(EbNoVec_qpsk/10); % SNR linear values for QPSK % Calculate the theoretical BER for QPSK using the provided formula ber_qpsk_theo = 2*qfunc(sqrt(2*SNRlin_qpsk)); % Plot the results for QPSK s...

Theoretical BER vs SNR for BPSK

Let's simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel.  Key Points Fig 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗] BPSK Modulation: Transmits one of two signals: +√Eb ​ or -√Eb , where Eb​ is the energy per bit. These signals represent binary 0 and 1 . AWGN Channel: The channel adds Gaussian noise with zero mean and variance N0/2 (where N0 ​ is the noise power spectral density). Receiver Decision: The receiver decides if the received signal is closer to +√Eb​ (for bit 0) or -√Eb​ (for bit 1) . Bit Error Rate (BER) The probability of error (BER) for BPSK is given by a function called the Q-function. The Q-function Q(x) measures the tail probability of the normal distribution, i.e., the probability that a Gaussian random variable exceeds a certain value x.  Understanding the Q...