Skip to main content

Wide Sense Stationary Signal (WSS)


Stationary and Wide Sense Stationary Process

A stochastic process {…, Xt-1, Xt, Xt+1, Xt+2, …} consisting of random variables indexed by time index t is a time series.

The stochastic behavior of {Xt} is determined by specifying the probability density or mass functions (pdf’s):

p(xt1, xt2, xt3, …, xtm)

for all finite collections of time indexes

{(t1, t2, …, tm), m < ∞}

i.e., all finite-dimensional distributions of {Xt}.

A time series {Xt} is strictly stationary if

p(t1 + τ, t2 + τ, …, tm + τ) = p(t1, t2, …, tm),

∀τ, ∀m, ∀(t1, t2, …, tm).

Where p(t1 + τ, t2 + τ, …, tm + τ) represents the cumulative distribution function of the unconditional (i.e., with no reference to any particular starting value) joint distribution. A process {Xt} is said to be strictly stationary or strict-sense stationary if τ doesn’t affect the function p. Thus, p is not a function of time.

A time series {Xt} is called covariance stationary if

E(Xt) = μ

Var(Xt) = σx2

Cov(Xt, Xt+τ) = γ(τ)

(All constant over time t)

Wide Sense Stationary Process

A random process is called weak-sense stationary or wide-sense stationary (WSS) if its mean function and its correlation function do not change by shifts in time.

μx(t) = μx

Rxx(t1, t2) = Rxx(t1 + α, t2 + α) for every α


Main Properties

  1. The mean and autocorrelation do not change over time.
  2. A wide-sense stationary (WSS) process has a constant mean, constant variance, and an autocorrelation function that depends only on the time difference (lag), not the absolute time.


For a WSS input to an LTI system, you are expected to study the output's statistical properties (such as mean, variance, and autocorrelation). You will find that the output signal is also a WSS signal. If your input signal has zero mean and unit variance, then the LTI output will have the same nature as the input signal, but:

  1. The mean of the output is scaled by the DC gain of the LTI system.
  2. The variance of the output is scaled by the total power gain of the system.



















MATLAB Code to Check the Autocorrelation Property of a WSS Signal Over Time

%The code is developed by SalimWireless.com
clc;
clear;
close all;


% Generate a wide-sense stationary (WSS) signal with 0 mean and unit variance
N = 1000; % Length of the signal
X = randn(1, N); % WSS signal


% Define the time indices t1 and t2
t1 = 0; % Time index 1
t2 = 100; % Time index 2


% Initialize autocorrelation value
Rx_val = 0;


% Loop to compute the sum for autocorrelation at (t1, t2)
for n = 1:N
% Ensure indices (n + t1) and (n + t2) are within bounds
if (n + t1 <= N) && (n + t2 <= N)
Rx_val = Rx_val + X(n + t1) * X(n + t2);
else
break; % Stop if indices go out of bounds
end
end


% Normalize by the length of the signal
Rx_val = Rx_val / N;


% Define the time indices t1 and t2
t3 = 100; % Time index 1
t4 = 200; % Time index 2


% Initialize autocorrelation value
Rx_val1 = 0;


% Loop to compute the sum for autocorrelation at (t1, t2)
for n = 1:N
% Ensure indices (n + t1) and (n + t2) are within bounds
if (n + t3 <= N) && (n + t4 <= N)
Rx_val1 = Rx_val1 + X(n + t3) * X(n + t4);
else
break; % Stop if indices go out of bounds
end
end


% Normalize by the length of the signal
Rx_val1 = Rx_val1 / N;
% Display the result
disp(['R_X(', num2str(t2), ') = ', num2str(Rx_val)]);
disp(['R_X(', num2str(t3), ', ', num2str(t4), ') = ', num2str(Rx_val)]);

Output

R_X( 100) = 0.039786
R_X(100, 200) = 0.039786


Copy the MATLAB Code above from here



MATLAB Code for the Output of an ARMA Filter When the Input is a WSS Signal

clc; clear; close all;

% Step 1: Get user input for WSS signal parameters
mu = input('Enter the mean of the WSS signal: ');
sigma2 = input('Enter the variance of the WSS signal: ');
N = 1000; % Length of signal

% Generate WSS signal with specified mean and variance
x = sqrt(sigma2) * randn(1, N) + mu;

% Step 2: Define ARMA filter coefficients
b = [1, -0.5]; % MA coefficients
a = [1, -0.8]; % AR coefficients (assumed stable)

% Step 3: Apply ARMA filter using built-in function
y = filter(b, a, x); % y[n] = (b/a) * x[n]

% Step 4: Calculate mean and variance
mean_x = mean(x);
mean_y = mean(y);
var_x = var(x);
var_y = var(y);

% Step 5: Display results
fprintf('Mean of input signal: %.4f\n', mean_x);
fprintf('Mean of output signal: %.4f\n', mean_y);
fprintf('Variance of input signal: %.4f\n', var_x);
fprintf('Variance of output signal: %.4f\n', var_y);

% Step 6: Plot input and output signals
figure;
subplot(2,1,1);
plot(x); title('Input Signal (WSS)'); ylabel('x[n]');
subplot(2,1,2);
plot(y); title('Output Signal (After ARMA Filter)'); ylabel('y[n]');

% Step 7: Autocorrelation comparison
figure;
subplot(2,1,1);
[R_x, lags_x] = xcorr(x - mean_x, 'biased');
plot(lags_x, R_x); title('Autocorrelation of Input x[n]');
xlabel('Lag'); ylabel('R_x');

subplot(2,1,2);
[R_y, lags_y] = xcorr(y - mean_y, 'biased');
plot(lags_y, R_y); title('Autocorrelation of Output y[n]');
xlabel('Lag'); ylabel('R_y');

Output

Enter the mean of the WSS signal: 0
Enter the variance of the WSS signal: 1
Mean of input signal: -0.0214
Mean of output signal: -0.0545
Variance of input signal: 1.0593
Variance of output signal: 1.3152

Copy the aforementioned MATLAB code from here


People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

MATLAB code for MSK

 Copy the MATLAB Code from here % The code is developed by SalimWireless.com clc; clear; close all; % Define a bit sequence bitSeq = [0, 1, 0, 0, 1, 1, 1, 0, 0, 1]; % Perform MSK modulation [modSignal, timeVec] = modulateMSK(bitSeq, 10, 10, 10000); % Plot the modulated signal subplot(2,1,1); samples = 1:numel(bitSeq); stem(samples, bitSeq); title('Original message signal'); xlabel('Time (s)'); ylabel('Amplitude'); % Plot the modulated signal subplot(2,1,2); samples = 1:10000; plot(samples / 10000, modSignal(1:10000)); title('MSK modulated signal'); xlabel('Time (s)'); ylabel('Amplitude'); % Perform MSK demodulation demodBits = demodMSK(modSignal, 10, 10, 10000); % Function to perform MSK modulation function [signal, timeVec] = modulateMSK(bits, carrierFreq, baudRate, sampleFreq) % Converts a binary bit sequence into an MSK-modulated signal % Inputs: % bits - Binary input sequence % carrierFreq - Carri...

MATLAB Code for BER performance of QPSK with BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc

  QPSK offers double the data rate of BPSK while maintaining a similar bit error rate at low SNR when Gray coding is used. It shares spectral efficiency with 4-QAM and can outperform 4-QAM or 16-QAM in very noisy channels. QPSK is widely used in practical wireless systems, often alongside QAM in adaptive modulation schemes [Read more...]   MATLAB Code clear all; close all; % Set parameters for QAM snr_dB = -20:2:20; % SNR values in dB qam_orders = [4, 16, 64, 256]; % QAM modulation orders % Loop through each QAM order and calculate theoretical BER figure; for qam_order = qam_orders     % Calculate theoretical BER using berawgn for QAM     ber_qam = berawgn(snr_dB, 'qam', qam_order);     % Plot the results for QAM     semilogy(snr_dB, ber_qam, 'o-', 'DisplayName', sprintf('%d-QAM', qam_order));     hold on; end % Set parameters for QPSK EbNoVec_qpsk = (-20:20)'; % Eb/No range for QPSK SNRlin_qpsk = 10.^(...

Constellation Diagrams of ASK, PSK, and FSK

BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams SNR (dB): 15 Add AWGN Noise Modulation Type BPSK BFSK ...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Simulator for m-ary QAM and m-ary PSK 🧮 MATLAB Codes 📚 Further Reading Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance,...

Theoretical and simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading   BER vs. SNR denotes how many bits in error are received in a communication process for a particular Signal-to-noise (SNR) ratio. In most cases, SNR is measured in decibel (dB). For a typical communication system, a signal is often affected by two types of noises 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading In the case of additive white Gaussian noise (AWGN), random magnitude is added to the transmitted signal. On the other hand, Rayleigh fading (due to multipath) attenuates the different frequency components of a signal differently. A good signal-to-noise ratio tries to mitigate the effect of noise.  Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation The theoretical BER for binary ASK (BASK) in an AWGN channel is...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Overview 🧮 Simulator 🧮 Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Codes 🧮 Some Questions and Answers 📚 Further Reading Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate are same for binary ASK, FSK, and PSK. Select Modulation Type: ASK FSK PSK Baud Rate or Bit Rate (bps): Frequency Deviation (Hz) for FSK: Calculate Bandwidth Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its r...

MATLAB Code for QAM (Quadrature Amplitude Modulation)

📘 Overview of QAM 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 📚 Further Reading   One of the best-performing modulation techniques is QAM [↗] . Here, we modulate the symbols by varying the carrier signal's amplitude and phase in response to the variation in the message signal (or voltage variation). So, we may say that QAM is a combination of phase and amplitude modulation. Additionally, it performs better than ASK or PSK [↗] . In fact, any constellation for any type of modulation, signal set (or, symbols) is structured in a way that prevents them from interacting further by being distinct by phase, amplitude, or frequency. MATLAB Script (for 4-QAM) % This code is written by SalimWirelss.Com % This is an example of 4-QAM. Here constellation size is 4 % or total number of symbols/signals is 4 % We need 2 bits once to represent four constellation points % QAM modulation is the combina...