Skip to main content

Wide Sense Stationary Signal (WSS)


Stationary and Wide Sense Stationary Process

A stochastic process {…, Xt-1, Xt, Xt+1, Xt+2, …} consisting of random variables indexed by time index t is a time series.

The stochastic behavior of {Xt} is determined by specifying the probability density or mass functions (pdf’s):

p(xt1, xt2, xt3, …, xtm)

for all finite collections of time indexes

{(t1, t2, …, tm), m < ∞}

i.e., all finite-dimensional distributions of {Xt}.

A time series {Xt} is strictly stationary if

p(t1 + τ, t2 + τ, …, tm + τ) = p(t1, t2, …, tm),

∀τ, ∀m, ∀(t1, t2, …, tm).

Where p(t1 + τ, t2 + τ, …, tm + τ) represents the cumulative distribution function of the unconditional (i.e., with no reference to any particular starting value) joint distribution. A process {Xt} is said to be strictly stationary or strict-sense stationary if τ doesn’t affect the function p. Thus, p is not a function of time.

A time series {Xt} is called covariance stationary if

E(Xt) = μ

Var(Xt) = σx2

Cov(Xt, Xt+τ) = γ(τ)

(All constant over time t)

Wide Sense Stationary Process

A random process is called weak-sense stationary or wide-sense stationary (WSS) if its mean function and its correlation function do not change by shifts in time.

μx(t) = μx

Rxx(t1, t2) = Rxx(t1 + α, t2 + α) for every α


Main Properties

  1. The mean and autocorrelation do not change over time.
  2. A wide-sense stationary (WSS) process has a constant mean, constant variance, and an autocorrelation function that depends only on the time difference (lag), not the absolute time.


For a WSS input to an LTI system, you are expected to study the output's statistical properties (such as mean, variance, and autocorrelation). You will find that the output signal is also a WSS signal. If your input signal has zero mean and unit variance, then the LTI output will have the same nature as the input signal, but:

  1. The mean of the output is scaled by the DC gain of the LTI system.
  2. The variance of the output is scaled by the total power gain of the system.



















MATLAB Code to Check the Autocorrelation Property of a WSS Signal Over Time

%The code is developed by SalimWireless.com
clc;
clear;
close all;


% Generate a wide-sense stationary (WSS) signal with 0 mean and unit variance
N = 1000; % Length of the signal
X = randn(1, N); % WSS signal


% Define the time indices t1 and t2
t1 = 0; % Time index 1
t2 = 100; % Time index 2


% Initialize autocorrelation value
Rx_val = 0;


% Loop to compute the sum for autocorrelation at (t1, t2)
for n = 1:N
% Ensure indices (n + t1) and (n + t2) are within bounds
if (n + t1 <= N) && (n + t2 <= N)
Rx_val = Rx_val + X(n + t1) * X(n + t2);
else
break; % Stop if indices go out of bounds
end
end


% Normalize by the length of the signal
Rx_val = Rx_val / N;


% Define the time indices t1 and t2
t3 = 100; % Time index 1
t4 = 200; % Time index 2


% Initialize autocorrelation value
Rx_val1 = 0;


% Loop to compute the sum for autocorrelation at (t1, t2)
for n = 1:N
% Ensure indices (n + t1) and (n + t2) are within bounds
if (n + t3 <= N) && (n + t4 <= N)
Rx_val1 = Rx_val1 + X(n + t3) * X(n + t4);
else
break; % Stop if indices go out of bounds
end
end


% Normalize by the length of the signal
Rx_val1 = Rx_val1 / N;
% Display the result
disp(['R_X(', num2str(t2), ') = ', num2str(Rx_val)]);
disp(['R_X(', num2str(t3), ', ', num2str(t4), ') = ', num2str(Rx_val)]);

Output

R_X( 100) = 0.039786
R_X(100, 200) = 0.039786


Copy the MATLAB Code above from here



MATLAB Code for the Output of an ARMA Filter When the Input is a WSS Signal

clc; clear; close all;

% Step 1: Get user input for WSS signal parameters
mu = input('Enter the mean of the WSS signal: ');
sigma2 = input('Enter the variance of the WSS signal: ');
N = 1000; % Length of signal

% Generate WSS signal with specified mean and variance
x = sqrt(sigma2) * randn(1, N) + mu;

% Step 2: Define ARMA filter coefficients
b = [1, -0.5]; % MA coefficients
a = [1, -0.8]; % AR coefficients (assumed stable)

% Step 3: Apply ARMA filter using built-in function
y = filter(b, a, x); % y[n] = (b/a) * x[n]

% Step 4: Calculate mean and variance
mean_x = mean(x);
mean_y = mean(y);
var_x = var(x);
var_y = var(y);

% Step 5: Display results
fprintf('Mean of input signal: %.4f\n', mean_x);
fprintf('Mean of output signal: %.4f\n', mean_y);
fprintf('Variance of input signal: %.4f\n', var_x);
fprintf('Variance of output signal: %.4f\n', var_y);

% Step 6: Plot input and output signals
figure;
subplot(2,1,1);
plot(x); title('Input Signal (WSS)'); ylabel('x[n]');
subplot(2,1,2);
plot(y); title('Output Signal (After ARMA Filter)'); ylabel('y[n]');

% Step 7: Autocorrelation comparison
figure;
subplot(2,1,1);
[R_x, lags_x] = xcorr(x - mean_x, 'biased');
plot(lags_x, R_x); title('Autocorrelation of Input x[n]');
xlabel('Lag'); ylabel('R_x');

subplot(2,1,2);
[R_y, lags_y] = xcorr(y - mean_y, 'biased');
plot(lags_y, R_y); title('Autocorrelation of Output y[n]');
xlabel('Lag'); ylabel('R_y');

Output

Enter the mean of the WSS signal: 0
Enter the variance of the WSS signal: 1
Mean of input signal: -0.0214
Mean of output signal: -0.0545
Variance of input signal: 1.0593
Variance of output signal: 1.3152

Copy the aforementioned MATLAB code from here


People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Comparing Baseband and Passband Implementations of ASK, FSK, and PSK

📘 Overview 🧮 Baseband and Passband Implementations of ASK, FSK, and PSK 🧮 Difference betwen baseband and passband 📚 Further Reading 📂 Other Topics on Baseband and Passband ... 🧮 Baseband modulation techniques 🧮 Passband modulation techniques   Baseband modulation techniques are methods used to encode information signals onto a baseband signal (a signal with frequencies close to zero), allowing for efficient transmission over a communication channel. These techniques are fundamental in various communication systems, including wired and wireless communication. Here are some common baseband modulation techniques: Amplitude Shift Keying (ASK) [↗] : In ASK, the amplitude of the baseband signal is varied to represent different symbols. Binary ASK (BASK) is a common implementation where two different amplitudes represent binary values (0 and 1). ASK is simple but susceptible to noise...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

Constellation Diagrams of M-ary QAM | M-ary Modulation

📘 Overview of QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations 📚 Further Reading 📂 Other Topics on Constellation Diagrams of QAM configurations ... 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 🧮 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK QAM Unlike this, the M-ary PSK signal is modulated with a different phase-shifted version of the carrier signal and varying amplitude levels. Let me give an example for better comprehension. QAM = ASK +...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate a...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

📘 Overview & Theory of Pulse Amplitude Moduation (PAM) 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Analog Signal and Digital Signal 🧮 Simulation results for comparison of PAM, PWM, PPM, DM, and PCM 📚 Further Reading 📂 Other Topics on Pulse Amplitude Modulation ... 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of an Analog Signal (2) 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data 🧮 Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM)   Pulse Amplitude Modulation (PAM) & Demodulation of an Analog Message Signal MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with per...

Definition of the Fourier Series

  1. Introduction Most of the phenomena studied in the domain of Engineering and Science are periodic in nature. For instance, current and voltage in an alternating current circuit. These periodic functions could be analyzed into their constituent components (fundamentals and harmonics) by a process called Fourier analysis. A Fourier series is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series, but not all trigonometric series are Fourier series. Fourier series is used to describe a periodic signal in terms of cosine and sine waves. In other words, it allows us to model any arbitrary periodic signal with a combination of sines and cosines.      Fig: Sine Wave       Fig: Triangular Wave    Fig: Sawtooth Wave      Fig: Square Wave   2. The common form of the Fourier series Sinusoidal functions are periodic over 2π angular distance. For a perio...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 Coherence Time Calculator 🧮 Relationship between Coherence Time and Delay Spread 🧮 MATLAB Code to find Relationship between Coherence Time and delay Spread 📚 Further Reading   Coherence Bandwidth Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics. coherence bandwidth is  The inverse of Doppler spread delay time, or any spread delay time due to fading in general.  The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel. The two are related by the following formulae: Coherence bandwidth = 1/(delay spread time) Or, Coherence Bandwidth = 1/(root-mean-square delay spread time) (Coherence bandwidth in Hertz) For instance, the coherence bandwidth is...