Skip to main content

mmWave Precoder using MATLAB

 

MATLAB Code

close all; clear; rng('shuffle'); clc;

% Simulation parameters
t = 32; % Number of Tx/Rx Antennas
r = 32; % Number of Tx/Rx Antennas
numRF = 6; % Number of RF Chains
G = 64; % Grid Size
L = 8; % Grid Size
Ns = 6; % Sparsity level
ITER = 100; % Number of iterations

% Initializations
H = zeros(r,t); % Channel matrix
SNRdB = -5:1.5:15; % SNR in dB
C_HYB = zeros(length(SNRdB), 1); % Capacity of Hybrid MIMO
C_MIMO = zeros(length(SNRdB), 1); % Capacity of Conventional MIMO
A_T = zeros(t, G); % Transmit response matrix
A_R = zeros(r, G); % Receive response matrix

% Generate transmit array response matrix
for l = 1:G
dirCos = 2/G*(l-1) - 1; % Direction cosine for each grid point
for K = 1:t
A_T(K, l) = 1/sqrt(t) * exp(-j*pi*(K-1)*dirCos);
end
end

% Assume A_R = A_T for simplicity
A_R = A_T;

% Main simulation loop
for iter1 = 1:ITER
% ===== Channel Generation =====
A_T_genie = zeros(t, L);
A_R_genie = zeros(r, L);

% Generate AoD/AoA uniformly in grid
AoDlist = randperm(G, L);
AoAlist = randperm(G, L);

% Tx/Rx array response matrices
A_T_genie = A_T(:, AoDlist);
A_R_genie = A_R(:, AoAlist);

% Channel gain
chGain = 1/sqrt(2)*(randn(L,1) + j*randn(L,1));

% Channel matrix
H = sqrt(t*r/L) * A_R_genie * diag(chGain) * A_T_genie';

% ===== SVD of Channel =====
[U,S,V] = svd(H);
Fopt = V(:,1:Ns); % Optimal unconstrained precoder

% ===== OMP-Based Transmit Hybrid Precoder Design =====
[FBB, FRF] = SOMP_mmW_precoder(Fopt, A_T, eye(t), numRF);
FBB_NORM = sqrt(Ns)/(norm(FRF*FBB,'fro')) * FBB; % Normalized baseband precoder

% ===== Capacity Evaluation over SNR =====
for i_snr = 1:length(SNRdB)
np = 10^(-SNRdB(i_snr)/10); % Noise power for signal power = 1

% --- Optimal unconstrained MMSE combiner for full MIMO ---
Wmmse_opt = H*Fopt*inv(Fopt'*H'*H*Fopt + np*Ns*eye(Ns));

% Capacity of unconstrained MIMO system
disp('Size of Wmmse_opt''*H*Fopt:');
disp(size(Wmmse_opt'*H*Fopt)); % Should output [Ns, Ns]

disp('Size of 1/Ns*eye(Ns):');
disp(size(1/Ns*eye(Ns))); % Should output [Ns, Ns]

% Call to mimo_capacity
C_MIMO(i_snr) = C_MIMO(i_snr) + ...
mimo_capacity(Wmmse_opt'*H*Fopt, 1/Ns*eye(Ns), np); % Corrected: Use Wmmse_opt

% --- Optimal unconstrained MMSE combiner for hybrid precoder ---
Ryy = 1/Ns * H*FRF*FBB_NORM*FBB_NORM'*FRF'*H' + np*eye(r);
Wmmse_Hyb = H*FRF*FBB_NORM*inv(FBB_NORM'*FRF'*H'*H*FRF*FBB_NORM + np*Ns*eye(Ns));

% --- OMP-based receive hybrid combiner design ---
[WBB, WRF] = SOMP_mmW_precoder(Wmmse_Hyb, A_R, Ryy, numRF); % Ensure WBB and WRF are computed here

% --- Capacity of hybrid precoder/combiner ---
% np is the noise power, so use it directly as the noise power scalar
noisePower = np;

C_HYB(i_snr) = C_HYB(i_snr) + ...
mimo_capacity(WBB'*WRF'*H*FRF*FBB_NORM, 1/Ns*eye(Ns), noisePower);
end
end
C_MIMO = C_MIMO / ITER;
C_HYB = C_HYB / ITER;

plot(SNRdB, C_MIMO, 'b', 'linewidth', 3.0);
hold on;
plot(SNRdB, C_HYB, 'm-.', 'linewidth', 3.0);

grid on;
axis tight;

xlabel('SNR (dB)');
ylabel('Capacity (b/s/Hz)');
legend('Conventional MIMO', 'Hybrid MIMO');
title('Capacity vs SNR');

% Function: SOMP_mmW_precoder
function [FBB, FRF] = SOMP_mmW_precoder(Fopt, A_T, Ryy, numRF)
% SOMP_mmW_precoder implements Sparse Orthogonal Matching Pursuit (SOMP)
% Inputs:
% Fopt - Optimal unconstrained precoder (full dimension)
% A_T - Transmit array response matrix
% Ryy - Covariance matrix (used in receive hybrid precoder case)
% numRF - Number of RF chains (desired rank of hybrid precoder)
% Outputs:
% FBB - Baseband precoder (lower-dimensional)
% FRF - RF precoder (upper-dimensional)

[t, G] = size(A_T); % t: Number of transmit antennas, G: Grid size
L = numRF; % Number of RF chains (rank of the hybrid precoder)
FBB = zeros(L, G); % Baseband precoder (output)
FRF = zeros(t, L); % RF precoder (output)

% Step 1: Initialize the residual as the full precoder (Fopt)
res = Fopt;
selectedColumns = [];

% Step 2: Iterative column selection
for l = 1:L
% Compute the correlation of each column of A_T with the residual
corr = abs(A_T' * res); % Correlation between the residual and array response
[~, idx] = max(corr); % Find index of the best matching column
selectedColumns = [selectedColumns, idx]; % Store the selected index

% Step 3: Update the RF precoder matrix with the selected column
FRF(:, l) = A_T(:, selectedColumns(end)); % Assign the selected column to RF precoder

% Update the residual by removing the contribution of the selected column
res = res - A_T(:, selectedColumns(end)) * (A_T(:, selectedColumns(end))' * res);
end

% Step 4: Solve for the baseband precoder using least squares
% Now, FBB should be computed such that FRF * FBB approximates Fopt.
% Since we have L columns in FRF and L rows in FBB, we use FRF' to solve for FBB.
FBB = pinv(FRF' * FRF) * FRF' * Fopt; % Pseudo-inverse solution for least squares
end

% Function: mimo_capacity
function capacity = mimo_capacity(H, W, noisePower)
% mimo_capacity calculates the capacity of a MIMO system.
% Inputs:
% H - Channel matrix (r x t)
% W - Receiver combiner matrix (r x Ns)
% noisePower - Noise power (scalar, typically 1 or computed from SNR)
% Outputs:
% capacity - MIMO capacity in b/s/Hz

% Effective received signal matrix after applying combiner W
effectiveH = H * W; % (r x Ns), where r is number of receive antennas, Ns is number of streams

% Compute the SNR matrix
snrMatrix = effectiveH' * effectiveH; % (Ns x Ns)

% Check the dimensions of snrMatrix and ensure it is square
[Ns, Ns_check] = size(snrMatrix);
if Ns ~= Ns_check
error('SNR matrix must be square: Ns x Ns');
end

% Compute the capacity using the Shannon capacity formula:
% C = log2(det(I + (1/noisePower) * snrMatrix))

% Identity matrix of the same size as snrMatrix
I = eye(Ns);

% Check if noisePower is scalar and valid
if numel(noisePower) ~= 1
error('noisePower must be a scalar');
end

% Compute the capacity
capacity = log2(det(I + (1 / noisePower) * snrMatrix));
end



Output

 

 

Further Reading


People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Power Spectral Density Calculation Using FFT in MATLAB

📘 Overview 🧮 Steps to calculate the PSD of a signal 🧮 MATLAB Codes 📚 Further Reading Power spectral density (PSD) tells us how the power of a signal is distributed across different frequency components, whereas Fourier Magnitude gives you the amplitude (or strength) of each frequency component in the signal. Steps to calculate the PSD of a signal Firstly, calculate the first Fourier transform (FFT) of a signal Then, calculate the Fourier magnitude of the signal The power spectrum is the square of the Fourier magnitude To calculate power spectrum density (PSD), divide the power spectrum by the total number of samples and the frequency resolution. {Frequency resolution = (sampling frequency / total number of samples)} Sampling frequency (fs): The rate at which the continuous-time signal is sampled (in Hz). ...

FFT Magnitude and Phase Spectrum using MATLAB

📘 Overview & Theory 🧮 MATLAB Code 1 🧮 MATLAB Code 2 📚 Further Reading   MATLAB Code  % Developed by SalimWireless.Com clc; clear; close all; % Configuration parameters fs = 10000; % Sampling rate (Hz) t = 0:1/fs:1-1/fs; % Time vector creation % Signal definition x = sin(2 * pi * 100 * t) + cos(2 * pi * 1000 * t); % Calculate the Fourier Transform y = fft(x); z = fftshift(y); % Create frequency vector ly = length(y); f = (-ly/2:ly/2-1) / ly * fs; % Calculate phase while avoiding numerical precision issues tol = 1e-6; % Tolerance threshold for zeroing small values z(abs(z) < tol) = 0; phase = angle(z); % Plot the original Signal figure; subplot(3, 1, 1); plot(t, x, 'b'); xlabel('Time (s)'); ylabel('|y|'); title('Original Messge Signal'); grid on; % Plot the magnitude of the Fourier Transform subplot(3, 1, 2); stem(f, abs(z), 'b'); xlabel('Frequency (Hz)'); ylabel('|y|'); title('Magnitude o...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

Theoretical BER vs SNR for binary ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Codes 📚 Further Reading Theoretical BER vs SNR for Amplitude Shift Keying (ASK) The theoretical Bit Error Rate (BER) for binary ASK depends on how binary bits are mapped to signal amplitudes. For typical cases: If bits are mapped to 1 and -1, the BER is: BER = Q(√(2 × SNR)) If bits are mapped to 0 and 1, the BER becomes: BER = Q(√(SNR / 2)) Where: Q(x) is the Q-function: Q(x) = 0.5 × erfc(x / √2) SNR : Signal-to-Noise Ratio N₀ : Noise Power Spectral Density Understanding the Q-Function and BER for ASK Bit '0' transmits noise only Bit '1' transmits signal (1 + noise) Receiver decision threshold is 0.5 BER is given by: P b = Q(0.5 / σ) , where σ = √(N₀ / 2) Using SNR = (0.5)² / N₀, we get: BER = Q(√(SNR / 2)) Theoretical BER vs ...

MATLAB Code for Rms Delay Spread

RMS delay spread is crucial when you need to know how much the signal is dispersed in time due to multipath propagation, the spread (variance) around the average. In high-data-rate systems like LTE, 5G, or Wi-Fi, even small time dispersions can cause ISI. RMS delay spread is directly related to the amount of ISI in such systems. RMS Delay Spread [↗] Delay Spread Calculator Enter delays (ns) separated by commas: Enter powers (dB) separated by commas: Calculate   The above calculator Converts Power to Linear Scale: It correctly converts the power values from decibels (dB) to a linear scale. Calculates Mean Delay: It accurately computes the mean excess delay, which is the first moment of the power delay profile. Calculates RMS Delay Spread: It correctly calculates the RMS delay spread, defined as the square root of the second central moment of the power delay profile.   MATLAB Code  clc...