Let’s assume a square matrix A
The characteristic equation,
| A – λ*I | = 0
(where I is an identity matrix)
After calculating the values of λs we attempt to find eigenvectors for corresponding eigenvalues like this
For eigenvalue, λ = λ1
A*x = λ1*I*x (where, x is an unknown vector)
Or, (A - λ1*I)*x = 0
The value of x is the corresponding eigenvector of λ1
Power Method for Dominant Eigenvalue
Let λ1, λ2, λ3, and λn be the eigenvalues of an n X n matrix A. λ1 is called the dominant eigenvalue of A if
| λ1| > | λi |, i = 2, 3, ... , n
The eigenvectors corresponding to λ1 are called dominant eigenvectors of A.
Procedure
Choose an n X n matrix
The number of rows and columns should be the same (or matrix dimension mismatched)
Like the Jacobi and Gauss-Seidel methods, the power method for approximating eigenvalues is iterative. First, we assume that matrix A has a dominant eigenvalue with corresponding dominant eigenvectors. Then we choose an initial approximation x0 of one of the
dominant eigenvectors of A. This initial approximation must be a nonzero vector in Rn
Finally, we form the sequence given by
x1 = Ax0
x2 = Ax1 = A(Ax0) = A2x0
x3 = Ax2 = A(A2x0) = A3x0
. . .
xn = Axn-1 = A(An-1x0) = Anx0
(In the above, x1 denotes the value of vector x at the first iteration and so on)
Compare the updated value of x with its previous value (obtained from the previous iteration)
For large powers of k, and by properly scaling this sequence, we will see that we obtain a good approximation of the dominant eigenvector of A.
Repeat the iteration process until convergence
The formula for finding the corresponding eigenvalue from eigenvector x.
If x is an eigenvector of A, then its corresponding eigenvalue is given by
λ = (Ax.x / x.x)
If they do not converge even after many iterations (maybe after 1000 iterations), then
Entered matrix has no dominant eigenvalue
Example
A = $\begin{bmatrix} 2 & - 12 \\ 1 & - 5 \end{bmatrix}$
We begin with an initial nonzero approximation of
x0 = $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
We then obtain the following approximations
x1 = Ax0 = $\begin{bmatrix} 2 & - 12 \\ 1 & - 5 \end{bmatrix}\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ = $\begin{bmatrix} - 10 \\ - 4 \end{bmatrix}$ = -4$\begin{bmatrix} 2.50 \\ 1.00 \end{bmatrix}$
x2 = Ax1 = $\begin{bmatrix} 2 & - 12 \\ 1 & - 5 \end{bmatrix}\begin{bmatrix} - 10 \\ - 4 \end{bmatrix}$ = $\begin{bmatrix} 28 \\ 10 \end{bmatrix}$ = 10$\begin{bmatrix} 2.80 \\ 1.00 \end{bmatrix}$
x3 = Ax2 = $\begin{bmatrix} 2 & - 12 \\ 1 & - 5 \end{bmatrix}\begin{bmatrix} 28 \\ 10 \end{bmatrix}$ = $\begin{bmatrix} - 64 \\ - 22 \end{bmatrix}$ = -22$\begin{bmatrix} 2.91 \\ 1.00 \end{bmatrix}$
x4 = Ax3 = $\begin{bmatrix} 2 & - 12 \\ 1 & - 5 \end{bmatrix}\begin{bmatrix} - 64 \\ - 22 \end{bmatrix}$ = $\begin{bmatrix} 136 \\ 46 \end{bmatrix}$ = 46$\begin{bmatrix} 2.96 \\ 1.00 \end{bmatrix}$
x5 = Ax4 = $\begin{bmatrix} 2 & - 12 \\ 1 & - 5 \end{bmatrix}\begin{bmatrix} 136 \\ 46 \end{bmatrix}$ = $\begin{bmatrix} - 280 \\ - 94 \end{bmatrix}$ = -94$\begin{bmatrix} 2.98 \\ 1.00 \end{bmatrix}$
x6 = Ax5 = $\begin{bmatrix} 2 & - 12 \\ 1 & - 5 \end{bmatrix}\begin{bmatrix} - 280 \\ - 94 \end{bmatrix}$ = $\begin{bmatrix} 568 \\ 190 \end{bmatrix}$ = 190$\begin{bmatrix} 2.99 \\ 1.00 \end{bmatrix}$
Note that the approximations in Example appear to be approaching scalar multiples of $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$
So, the obtained dominant eigenvector from the above iterations is
x = $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$
Now, we’ll find the corresponding eigenvalue from the obtained eigenvector
Formula
If x is an eigenvector of A, then its corresponding eigenvalue is given by
λ = (Ax.x / x.x)
Ax = $\begin{bmatrix} 2 & - 12 \\ 1 & - 5 \end{bmatrix}\begin{bmatrix} 2.99 \\ 1.00 \end{bmatrix}$ = $\begin{bmatrix} - 6.02 \\ - 2.01 \end{bmatrix}$
Then, Ax.x = $\begin{bmatrix} - 6.02 \\ - 2.01 \end{bmatrix}\begin{bmatrix} 2.99 \\ 1.00 \end{bmatrix}$ = -20.0 (approx.)
And x.x = $\begin{bmatrix} 2.99 \\ 1.00 \end{bmatrix}\begin{bmatrix} 2.99 \\ 1.00 \end{bmatrix}$ = $\begin{bmatrix} 2.99 \\ 1.00 \end{bmatrix}$ = 9.94 (approx.)
So, the corresponding eigenvalue, λ = (-20.0 / 9.94) = -2 (approx.)