Skip to main content

Wireless Communication Interview Questions | Page 2


 

Digital Communication (Modulation Techniques, etc.)

Importance of digital communication in competitive exams and core industries

Q. What is coherence bandwidth?

A. See the answer

Q. What is flat fading and slow fading?

A. See the answer.


Q. What is a constellation diagram?


Q. One application of QAM

A. 802.11 (Wi-Fi)


Q. Can you draw a constellation diagram of 4QPSK, BPSK, 16 QAM, etc.

A. Click here


Q. Which modulation technique will you choose when the channel is extremely noisy, BPSK or 16 QAM?

A. BPSK. PSK is less sensitive to noise as compared to Amplitude Modulation. We know QAM is a combination of Amplitude Modulation and PSK. Go through the chapter on "Modulation Techniques".


Q. Real-life application of QPSK modulation and demodulation


Q. What is OFDM? Why do we use it?


Q. What is the Cyclic prefix in OFDM?

 

Q. In a constellation diagram, which parameters are dominant to resist noise?

A. (1) Euclidian distance between constellation points. As Euclidian distance decreases, the effectiveness of noise increases. 

    (2) Signal-to-noise ratio per bit, or in plain language, power of each constellation point or transmitted power. 


Q. What does Quantization actually do in a communication system/process?

A. Quantization helps produce finite signal levels rather than infinite levels.


Q. Key performance measures of bandpass modulation schemes are

A. Low pass, band pass, and high pass are three terms that may be significant. We use LPF, where the effective signal frequencies are below a specific frequency. For a high-pass signal/filter, the opposite is true. In this case, we're only interested in higher frequencies of a threshold frequency. Now, bandpass signals are signals whose operational frequency is limited to a specific range, such as f1 MHz to f2 MHz. This differentiates it from the other two categories.


Bandpass modulatiModulation in the majority of the modulations. In the context of eavesdropping, this property is quite helpful.



Q. Five applications of Ask in digital modulation techniques

A. Off-on keying is another name for it. The transmitter uses this technology to send a signal fluctuating in amplitude or volts. It usually needs power to send bit '1' and nearly little energy to send bit '0.' ASK is used because it is simple to generate and has less complex circuitry. The following are a few examples of ASK applications:

1. Radio frequency (RF) applications at low frequencies

2. Wireless communication between base stations

3. Devices for industrial networks



Q. Compression modulation techniques

A. The pulse compression approach sends the signal through a matching filter. A matched filter is a linear filter with a maximized signal-to-noise ratio.



Q. Why is it important to have voice and tone modulation

A. ModulatiModulation conversion of a low-frequency baseband signal to a high-frequency signal using a high-frequency carrier wave. Because sending a baseband signal might cause severe interference with other baseband signals if everyone sends unmodulated baseband signals, we employ modulatiModulation the signal wirelessly transferable. In some instances, though, the antenna size could be a few kilometers if we do not use modulatiModulation. You know, human voice signal has many frequencies up to 4 KHz. Keep in mind that the human voice signal has more than one frequency. A signal is described as a single tone if it has only one frequency. However, if a signal contains many frequencies, we must modulate all of those frequencies. The modular modulation is referred to as 'multi-tone modulation.'



Q. Difference between modulated and unmodulated signal

A. The term "modulated signal" refers to a signal modulated using a high-frequency carrier signal.

In the case of wireless communication, modulatiModulationial. We modulate the signal to make it a bandpass signal. As a result, there is less interference with other signals. Modulation, on the other hand, allows signal transmission to be multiplexed. As a result, even in wired communication, modulatiModulationsionally is used to convey multiple data streams simultaneously.


Q. the basic rules to be maintained for modulation's primary purposes have already been discussed, such as antenna size reduction, signal multiplexing, etc. Signals are modulated with I and Q carriers in general, according to the basic rule of modulatiModulationtters "I" and "Q" stand for "in-phase modulation" and "quadrature modulation," respectively. We modify the data streams with varying amplitudes and phases in QAM (quadrature amplitude modulation).



Q. By doing modulation, audio can be sent to which distance

A. In general, modular modulation sends a signal for various purposes. Because the frequency of a modulated signal is substantially greater than that of an unmodulated signal, unmodulated signals may travel longer distances than modulated signals. The transmission distance is a different question that is determined by various factors.


Q. Which type of questions can be asked in competitive exams on modulatiModulatione difficulty of the exam questions might range from simple to complex. You may be asked what modulatiModulation Modulation hot topics include QPSK and QAM. On the other hand, you can be questioned about modulation techniques utilized in contemporary 4G and 5G communication technology.


Q. Which modulation technique has the highest Bandwidth?

A. For Amplitude modulation

Bandwidth of DSB => 2fm (fm=frequency of Message Signal)

For SSB-SC => fm

For VSB => Slightly greater than SSB-SC due to additional guard band

For Frequency modulation and Phase modulation,

Bandwidth => 2(ฮฒ +1)fm (ฮฒ = ratio of deviation of the carrier signal to the variation of modulating signal)


Q. If modulatiModulationdone, can we get information from different calls

A. Firstly, try to understand the primary purpose of modulatiModulation. Explain with an example. In the case of 2G GSM, each channel is of 200 KHz bandwidth, and eight users can be connected to the base station or cell tower simultaneously through the same channel. They use a TDM scheme to connect eight users simultaneously. We have already mentioned in the chapter on 'Modulation' that one of the primary purposes of modulation techniques is to multiplex the data by providing different independent and simultaneous data streams.

Q. Modulation and demodulation techniques in DCT

A. DCT is used in image processing, whereas DCT is used for simplification in calculation. DCT is taken as the basis function, and then the image's DCT transform and filters' DCT transform are multiplied. As we know, in the case of the convolution of two parts, we can bear the Fourier transform of those functions. Here in DCT, it gives us an advantage in simplification in calculation. 

Q. Discuss about compression modulation techniques

Q. What is the high data transfer rate in modulatiModulationodulation technique using analog input signal
A. Baseband analog signals are input in analog modulation techniques such as amplitude modulation, frequency modulation, and phase modulation. The input message signal is modulated using a high-frequency carrier wave.

Q. Why should we add carrier signal to modulated wave to generate modulated wave?

Q. How do we overcome the limitations of underwater wireless communication?

Q. What are the deductions made before handover in wireless communication?

Q. Wireless channels are more prone to bit error than wired channels

Q. Wireless channels are more prone to bit error than wired channels

Q. What is used to measure the reliability of communication channels?

Q. How does channel bandwidth offset communication?
A. To overcome interference between two signals, it is common practice in wireless communication to slightly vary the signal by frequency, phase, or amplitude.

Q. What are the salient features of base modulation?

Q. Coded Modulation technique needs Bandwidth when compared to ordinary Bandwidth?

Q. Do pulse modulation techniques use more power?

Q. 


People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Simulator for m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance,...

Constellation Diagrams of ASK, PSK, and FSK

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams SNR (dB): 15 Add A...

ASK, FSK, and PSK

๐Ÿ“˜ Overview ๐Ÿ“˜ Amplitude Shift Keying (ASK) ๐Ÿ“˜ Frequency Shift Keying (FSK) ๐Ÿ“˜ Phase Shift Keying (PSK) ๐Ÿ“˜ Which of the modulation techniques—ASK, FSK, or PSK—can achieve higher bit rates? ๐Ÿงฎ MATLAB Codes ๐Ÿ“˜ Simulator for binary ASK, FSK, and PSK Modulation ๐Ÿ“š Further Reading   ASK or OFF ON Keying Ask is a simple (less complex)  Digital Modulation Scheme  where we vary the  modulation  signal's amplitude or voltage by the message signal's amplitude or voltage. We select two levels (two different voltage levels) for transmitting modulated message signals for the exam. And for example, we mapped the signal as two-level  "+5 Volt"  (which is the upper level) and another level,  "0 Volt,"  which is considered as the lower level. Whenever we need to transmit binary bit  "1,"  then the transmitter transmits a signal of  "+5 Volts,"  and when we need to send bit  "0,"  t...

RMS Delay Spread, Excess Delay Spread and Multi-path ...

๐Ÿ“˜ Overview ๐Ÿงฎ Multipath Components or MPCs ๐Ÿงฎ Excess Delay spread ๐Ÿงฎ Power delay Profile ๐Ÿงฎ RMS Delay Spread ๐Ÿงฎ Simulator for Calculating RMS Delay Spread ๐Ÿงฎ Why is there significant multipath in the case of very high frequencies? ๐Ÿงฎ Why RMS Delay Spread is essential for wireless communication? ๐Ÿงฎ Why the Power Delay Profile is essential? ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Signal Processing RMS Delay Spread, Excess Delay Spread, and Multipath... RMS Delay Spread, Excess Delay Spread, and Multipath (MPCs) The fundamental distinction between wireless and wired connections is that in wireless connections signal reaches at receiver thru multipath signal propagation rather than directed transmission like co-axial cable. Wireless Communication has no set communication path between the transmitter and the receiver. The line of sight path, also known as the LOS path, is the shortest and most direc...

Comparisons among ASK, PSK, and FSK | And the definitions of each

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator ๐Ÿงฎ Noise Sensitivity, Bandwidth, Complexity, etc. ๐Ÿงฎ MATLAB Codes ๐Ÿงฎ Some Questions and Answers ๐Ÿ“š Further Reading Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate are same for binary ASK, FSK, and PSK. Select Modulation Type: ASK FSK PSK Baud Rate or Bit Rate (bps): Frequency Deviation (Hz) for FSK: Calculate Bandwidth Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its r...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

๐Ÿ“˜ Overview & Theory ๐Ÿงฎ MATLAB Code 1 ๐Ÿงฎ MATLAB Code 2 ๐Ÿงฎ MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data ๐Ÿงฎ Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM) ๐Ÿ“š Further Reading   Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitu...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator for m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together ๐Ÿงฎ MATLAB Code for M-ary QAM ๐Ÿงฎ MATLAB Code for M-ary PSK ๐Ÿ“š Further Reading   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK and QAM orders to be tested psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols ...