Skip to main content

Important Wireless Communication Terms | Page 5


 

Channel Input Response (CIR): We often calculate a transmitted signal's mean and standard deviation to understand the channel impulse response or CIR. We need to understand CIR to retrieve desired info from a transmitted signal. Read more ...

RMS delay spread & Doppler shift: For wireless communication, there are also some more factors to consider, such as Doppler shift, RMS delay spread, and so on. Wireless research necessitates statistical knowledge. Read more ...

Pathloss: read more ...

Gaussian Noise: CIR are not predefined in this case, but they do follow specific patterns, such as Gaussian random variables, poison distributions, and so forth. Read more ...

Frequency: a parameter denotes the carrier frequency in KHz, MHz, GHz, etc. Read more ...

The bandwidth of Channel: Another term that comes up regularly in wireless communications is bandwidth. We call it a channel's capacity in plain English. "bandwidth" refers to the amount of data sent between the transmitter and the receiver in a given period. The fundamental distinction between several evolutions of G's in telecom is based on bandwidth availability and powerful modulation techniques. Read more ...

BER and SER

'BER' is the abbreviation of bit error rate, and 'SER' is the abbreviation for symbol error rate. We often mention 'BER vs. SNR' graphs to investigate the reliability of a communication system.

Distance Range / Coverage range: a parameter denotes a cell tower's distance range/signal coverage range. Two options. Read more ...

Scenario: Three possibilities apply: "UMi," "UMa," and "RMa." The area covered by UMi is relatively limited. It has a range of 100 to 200 meters. When Uma is 200 meters to 2 kilometers long (approx). In the RMa scenario, signals travel up to a few kilometers. Read more ...

Environment: a parameter denotes the climate, either line-of-sight (LOS) or non-line-of-sight (NLOS). Read More ...

TX Power (dBm): a parameter denotes the transmit power in dBm. You may be surprised that mobile reception power for LTE service ranges from -44 dBm to -140 dBm (approx.). Read more ...

Base Station Height (m): This parameter will be a hot cake as increased frequency requires a small antenna. In general, antenna height ranges from 10 to 150. read more ...

Barometric Pressure: a parameter denotes the barometric Pressure in the bar used in evaluating propagation path loss induced by dry air. The typical value is 1013.25 mbar (millibar) (i.e., nominal for sea level) and may range from 10−5 to 1013.25 (mbar).

Humidity: an editable parameter denotes the relative humidity in percentage used in evaluating propagation path loss induced by vapor. The default value is 50 (%) and can be set to any number between 0 and 100 (%).

Temperature: a parameter denotes the temperature in degrees Celsius used in evaluating propagation path loss induced by haze/fog. The typical value is 20 (◦C) and may range from -100 to 50 (◦C).

Rain Rate: a parameter denotes the rain rate in mm/hr used in evaluating propagation path loss induced by rain. The default value is 0 (mm/hr), and the typical range is 0 to 150 (mm/hr).

Polarization: a parameter denotes the polarization relation between the TX and RX antennas or antenna arrays. They may be Co-Pol (co-polarization) or X-Pol (cross-polarization).

Foliage Loss: a parameter that indicates whether or not foliage loss will be considered in the simulation. The default setting is No (which implies foliage loss will not be considered) and can be used according to the environment (which means foliage loss will be considered).

Foliage Attenuation: a parameter denotes the propagation loss induced by foliage in dB/m. 

TX & RX Array Type denotes the TX & RX antenna array type. They are generally ULA (uniform linear array) or URA (constant rectangular array).

Several TX & RX Antenna Elements Nt & Nr: This parameter denotes the array's total number of TX or TX antenna elements.

TX & RX Antenna Spacing (in wavelength): Antenna Spacing is the spacing between adjacent TX or RX antennas in the array regarding the carrier wavelength. The traditional value is 0.5.

AOA & AOD: Angle of arrival (AOA) and angle of departure (AOD) refer to the pitch the signal ray creates with the antenna boresight during either the transmission or reception of the signal.

Azimuth & Elevation angles: The vertical angular range of a signal is measured by elevation angle, whereas the horizontal angular content is measured by azimuth angle.

Beamforming: read more …

HPBW (degrees):

#beamforming

<<Previous

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the s...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK and QAM orders to be tested psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk_order-1], 1, num_symb...

Theoretical BER vs SNR for BPSK

Let's simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel.  Key Points Fig 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗] BPSK Modulation: Transmits one of two signals: +√Eb ​ or -√Eb , where Eb​ is the energy per bit. These signals represent binary 0 and 1 . AWGN Channel: The channel adds Gaussian noise with zero mean and variance N0/2 (where N0 ​ is the noise power spectral density). Receiver Decision: The receiver decides if the received signal is closer to +√Eb​ (for bit 0) or -√Eb​ (for bit 1) . Bit Error Rate (BER) The probability of error (BER) for BPSK is given by a function called the Q-function. The Q-function Q(x) measures the tail probability of the normal distribution, i.e., the probability that a Gaussian random variable exceeds a certain value x.  Formula for BER: BER=Q(...

Constellation Diagrams of ASK, PSK, and FSK

Modulation ASK, FSK & PSK Constellation BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  This article will primarily discuss constellation diagrams, as well as what constellation diagrams tell us and the significance of constellation diagrams. Constellation diagrams can often demonstrate how the amplitude and phase of signals or symbols differ. These two characteristics lessen the interference between t...

Theoretical and simulated BER vs. SNR for ASK, FSK, and PSK

  BER vs. SNR denotes how many bits in error are received in a communication process for a particular Signal-to-noise (SNR) ratio. In most cases, SNR is measured in decibel (dB). For a typical communication system, a signal is often affected by two types of noises 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading In the case of additive white Gaussian noise (AWGN), random magnitude is added to the transmitted signal. On the other hand, Rayleigh fading (due to multipath) attenuates the different frequency components of a signal differently. A good signal-to-noise ratio tries to mitigate the effect of noise.  Calculate BER for Binary ASK Modulation The theoretical BER for binary ASK (BASK) in an AWGN channel is given by: BER  = (1/2) * erfc(0.5 * sqrt(SNR_ask));   Enter SNR (dB): Calculate BER BER vs. SNR curves for ASK, FSK, and PSK Calculate BER for Binary FSK Modulation The theoretical BER for binary FSK (BFSK) in a...

OFDM in MATLAB

  MATLAB Script % The code is written by SalimWireless.Com 1. Initialization clc; clear all; close all; 2. Generate Random Bits % Generate random bits numBits = 100; bits = randi([0, 1], 1, numBits); 3. Define Parameters % Define parameters numSubcarriers = 4; % Number of subcarriers numPilotSymbols = 3; % Number of pilot symbols cpLength = ceil(numBits / 4); % Length of cyclic prefix (one-fourth of the data length) 4. Add Cyclic Prefix % Add cyclic prefix dataWithCP = [bits(end - cpLength + 1:end), bits]; 5. Insert Pilot Symbols % Insert pilot symbols pilotSymbols = ones(1, numPilotSymbols); % Example pilot symbols (could be any pattern) dataWithPilots = [pilotSymbols, dataWithCP];   6. Perform OFDM Modulation (IFFT) % Perform OFDM modulation (IFFT) dataMatrix = reshape(dataWithPilots, numSubcarriers, []); ofdmSignal = ifft(dataMatrix, numSubcarriers); ofdmSignal = reshape(ofdmSignal, 1, []); 7. Display the Generated Data % Display the generated data disp("Original Bits:"); ...

Why is Time-bandwidth Product Important?

Time-Bandwidth Product (TBP) The time-bandwidth product (TBP) is defined as: TBP = Δ f ⋅ Δ t Δf (Bandwidth) : The frequency bandwidth of the signal, representing the range of frequencies over which the signal is spread. Δt (Time duration) : The duration for which the signal is significant, i.e., the time interval during which the signal is non-zero. The TBP is a measure of the "spread" of the signal in both time and frequency domains. A higher TBP means the signal is both spread over a larger time period and occupies a wider frequency range.     To calculate the period of a signal with finite bandwidth, Heisenberg’s uncertainty principle plays a vital role where the time-bandwidth product indicates the processing gain of the signal. We apply spread spectrum techniques in wireless communication for various reasons, such as interference resili...