Skip to main content

Important Wireless Communication Terms | Page 5


 

Channel Input Response (CIR): We often calculate a transmitted signal's mean and standard deviation to understand the channel impulse response or CIR. We need to understand CIR to retrieve desired info from a transmitted signal. Read more ...

RMS delay spread & Doppler shift: For wireless communication, there are also some more factors to consider, such as Doppler shift, RMS delay spread, and so on. Wireless research necessitates statistical knowledge. Read more ...

Pathloss: read more ...

Gaussian Noise: CIR are not predefined in this case, but they do follow specific patterns, such as Gaussian random variables, poison distributions, and so forth. Read more ...

Frequency: a parameter denotes the carrier frequency in KHz, MHz, GHz, etc. Read more ...

The bandwidth of Channel: Another term that comes up regularly in wireless communications is bandwidth. We call it a channel's capacity in plain English. "bandwidth" refers to the amount of data sent between the transmitter and the receiver in a given period. The fundamental distinction between several evolutions of G's in telecom is based on bandwidth availability and powerful modulation techniques. Read more ...

BER and SER

'BER' is the abbreviation of bit error rate, and 'SER' is the abbreviation for symbol error rate. We often mention 'BER vs. SNR' graphs to investigate the reliability of a communication system.

Distance Range / Coverage range: a parameter denotes a cell tower's distance range/signal coverage range. Two options. Read more ...

Scenario: Three possibilities apply: "UMi," "UMa," and "RMa." The area covered by UMi is relatively limited. It has a range of 100 to 200 meters. When Uma is 200 meters to 2 kilometers long (approx). In the RMa scenario, signals travel up to a few kilometers. Read more ...

Environment: a parameter denotes the climate, either line-of-sight (LOS) or non-line-of-sight (NLOS). Read More ...

TX Power (dBm): a parameter denotes the transmit power in dBm. You may be surprised that mobile reception power for LTE service ranges from -44 dBm to -140 dBm (approx.). Read more ...

Base Station Height (m): This parameter will be a hot cake as increased frequency requires a small antenna. In general, antenna height ranges from 10 to 150. read more ...

Barometric Pressure: a parameter denotes the barometric Pressure in the bar used in evaluating propagation path loss induced by dry air. The typical value is 1013.25 mbar (millibar) (i.e., nominal for sea level) and may range from 10−5 to 1013.25 (mbar).

Humidity: an editable parameter denotes the relative humidity in percentage used in evaluating propagation path loss induced by vapor. The default value is 50 (%) and can be set to any number between 0 and 100 (%).

Temperature: a parameter denotes the temperature in degrees Celsius used in evaluating propagation path loss induced by haze/fog. The typical value is 20 (◦C) and may range from -100 to 50 (◦C).

Rain Rate: a parameter denotes the rain rate in mm/hr used in evaluating propagation path loss induced by rain. The default value is 0 (mm/hr), and the typical range is 0 to 150 (mm/hr).

Polarization: a parameter denotes the polarization relation between the TX and RX antennas or antenna arrays. They may be Co-Pol (co-polarization) or X-Pol (cross-polarization).

Foliage Loss: a parameter that indicates whether or not foliage loss will be considered in the simulation. The default setting is No (which implies foliage loss will not be considered) and can be used according to the environment (which means foliage loss will be considered).

Foliage Attenuation: a parameter denotes the propagation loss induced by foliage in dB/m. 

TX & RX Array Type denotes the TX & RX antenna array type. They are generally ULA (uniform linear array) or URA (constant rectangular array).

Several TX & RX Antenna Elements Nt & Nr: This parameter denotes the array's total number of TX or TX antenna elements.

TX & RX Antenna Spacing (in wavelength): Antenna Spacing is the spacing between adjacent TX or RX antennas in the array regarding the carrier wavelength. The traditional value is 0.5.

AOA & AOD: Angle of arrival (AOA) and angle of departure (AOD) refer to the pitch the signal ray creates with the antenna boresight during either the transmission or reception of the signal.

Azimuth & Elevation angles: The vertical angular range of a signal is measured by elevation angle, whereas the horizontal angular content is measured by azimuth angle.

Beamforming: read more …

HPBW (degrees):

#beamforming

<<Previous

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Constellation Diagram of ASK in Detail

A binary bit '1' is assigned a power level of E b \sqrt{E_b}  (or energy E b E_b ), while a binary bit '0' is assigned zero power (or no energy).   Simulator for Binary ASK Constellation Diagram SNR (dB): 15 Run Simulation Noisy Modulated Signal (ASK) Original Modulated Signal (ASK) Energy per bit (Eb) (Tb = bit duration): We know that all periodic signals are power signals. Now we’ll find the energy of ASK for the transmission of binary ‘1’. E b = ∫ 0 Tb (A c .cos(2П.f c .t)) 2 dt = ∫ 0 Tb (A c ) 2 .cos 2 (2П.f c .t) dt Using the identity cos 2 x = (1 + cos(2x))/2: = ∫ 0 Tb ((A c ) 2 /2)(1 + cos(4П.f c .t)) dt ...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 MATLAB Code s 📚 Further Reading For Doppler Delay or Multi-path Delay Coherence time T coh ∝ 1 / v max (For slow fading, coherence time T coh is greater than the signaling interval.) Coherence bandwidth W coh ∝ 1 / Ï„ max (For frequency-flat fading, coherence bandwidth W coh is greater than the signaling bandwidth.) Where: T coh = coherence time W coh = coherence bandwidth v max = maximum Doppler frequency (or maximum Doppler shift) Ï„ max = maximum excess delay (maximum time delay spread) Notes: The notation v max −1 and Ï„ max −1 indicate inverse proportionality. Doppler spread refers to the range of frequency shifts caused by relative motion, determining T coh . Delay spread (or multipath delay spread) determines W coh . Frequency-flat fading occurs when W coh is greater than the signaling bandwidth. Coherence Bandwidth Coherence bandwidth is...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...

UGC-NET Electronic Science Previous Year Question Papers with Answer Keys and Full Explanations

    UGC-NET Electronic Science Question Paper With Answer Key Download Pdf [2023] Download Question Paper               See Answers   2025 | 2024 | 2023 | 2022 | 2021 | 2020 UGC-NET Electronic Science  2023 Answers with Explanations Q.115 (A) It is an AC bridge to measure frequency True. The Wien bridge is an AC bridge used for accurate frequency measurement . (B) It is a DC bridge to measure amplitude False. Wien Bridge works with AC signals , not DC. (C) It is used as frequency determining element True. In Wien bridge oscillators, the RC network sets the oscillation frequency . (D) It is used as band-pass filter Partially misleading. The Wien bridge network acts like a band-pass filter in the oscillator, but the bridge itself is not typically described this way. Exam questions usually mark this as False . (E) It is used as notch filter False. That is the Wien NOTCH bridge ,...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...