Skip to main content

Pathloss : Large Scale & Small Scale Pathloss and Pathloss Exponent 'n'




In wireless communication, the path loss is proportional to the square of the operating carrier frequency. As a result, the higher the frequency, the greater the path loss. Although path loss is affected by several parameters, including fading, shadowing, angle of arrival (AOA), and angle of departure (AOD), and others. In comparison to lesser frequencies, when the frequency is extremely high, it is easily absorbed by atmospheric gases, vapor, and rain. In the case of higher frequencies, however, the penetration loss is also greater. Path loss is linearly proportional to the carrier frequency, according to Firs' free space path loss. Path loss parameters are often divided into two categories. 1. Large Scale Path loss; 2. Small Scale Path loss. Large-scale path losses are basically path losses due to the distance between transmitter and receiver, shadowing loss, etc. Examples of small-scale path losses due to fading, angle of arrival & angle of departure, etc.


1. Free Space Pathloss:

This phenomenon occurs when a signal travels across empty space. The formula for free space path loss, or FSPL, is
Pathloss = 20log10(λ/4Ï€d) ... (1)

Free space path loss, however, is not completely relevant when discussing real-world wireless communication systems, particularly cellular wireless networks. because the FSPL includes atmospheric path loss. In addition, variable environmental conditions, regardless of TX and RX distance, result in varied path loss. For various environments, the path-loss exponent (PLE) 'n' changes dramatically. Below, we've talked about PLE.

Received signal power in an atmospheric environment can be defined as

Pr  = Pt + Gt + Gr + 20log10(λ/4Ï€d) + atmospheric pathloss……… (2)

                                             Pr = Received Power & Pt = Transmitted Power                                             
                                             Î» = wavelength of carrier frequency
                                             d = distance between Tx & Rx
                                            Gt & Gr = transmitter & receiver antenna gain, respectively
                                            20log10(λ/4Ï€d) = free space path loss at first propagation reference distance d

2. Close-in Path Loss Model:

The close-in path loss model is appropriate for current wireless communication systems operating at sub-6 GHz band or higher and is also applicable for millimeter wave 5G communication.

.... (3)

FSPL (d0) denotes free space path loss at the first few meters (i.e., 1 meter). The letter 'n' stands for path loss exponent. The letter 'd' represents the total path length between the transmitter and the receiver. The shadowing factor is denoted by the symbol, χσ.

This allows us to calculate path loss for current wireless communication bands, such as UWB communication, with excellent precision. This path loss model implies that it is extremely high for the first few meters, then exponentially increases based on the path loss exponent value for that environment (LOS or NLOS, urban or rural, etc.). In 28 GHz transmission, for example, path loss from the first meter is roughly 32 dB Following then, path loss grows by the wireless environment's path loss exponent value.


3.1. Large Scale Pathloss:

The path loss increases as the distance between the transmitter and receiver grow because the signal is attenuated in the atmospheric air as it travels the distance. When a path of equal length is propagated at different frequencies, the path loss is higher at higher frequencies than at lower frequencies. Similarly, path loss for LOS and NLOS pathways differs when TX and RX are positioned at a given distance. Because NLOS pathways typically cover a greater distance than LOS paths. The LOS path connects the transmitter and receiver in a straight line. [Read More about LOS and NLOS Paths]


3.2. Small Scale Pathloss:

Fading, angle of arrival (AOA) at the receiver, angle of departure (AOD) at the receiver, and other factors contribute to small-scale route losses. We send a signal from the transmitter antenna, which then spreads away from the antenna. There must be structures and vegetation there. As a result, the signal is reflected or refracted by the walls of the building or the foliage. The reflected or refracted signal then travels to the receiver via many NLOS paths other than the line of sight (LOS). Finding a LOS path between transmitter and receiver in densely built locations is tough. As a result, the same signal comes as MPCs at the receiver, and we find temporal dispersion for the arrival of the first and last MPCs for broadcasting the same signal from the transmitter side. Fading is caused by these MPCs. There are various types of fading, such as slow or fast fading, frequency selective fading, and so on. Fast fading occurs when the channel impulse response varies rapidly. Frequency selective fading refers to fading that varies according to frequency. We can see distinct fading patterns depending on the frequency. Assume we're looking at a different fading type/property for frequency F1 and a different fading type/property for frequency F2.

Also read about
[1] Difference between AWGN and Rayleigh Fading

Next Page>>

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

Simulation of ASK, FSK, and PSK using MATLAB Simulink

📘 Overview 🧮 How to use MATLAB Simulink 🧮 Simulation of ASK using MATLAB Simulink 🧮 Simulation of FSK using MATLAB Simulink 🧮 Simulation of PSK using MATLAB Simulink 🧮 Simulator for ASK, FSK, and PSK 🧮 Digital Signal Processing Simulator 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying b...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for ...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

MATLAB Code for Channel Impulse Response

MATLAB Code for Channel Impulse Response (CIR) 📘 Overview & Theory 🧮 MATLAB Code 🤔 How does CIR affect the signal? 🛠️ How to Mitigate Channel Distortion? 📚 Further Reading MATLAB Script for Simulating CIR This MATLAB script allows you to generate and visualize the channel impulse response (CIR). You can choose to create a 'random' multi-path channel or a near-'ideal' single-path channel to understand their distinct characteristics. % User input for choosing the type of impulse response response_type = input('Enter "random" for random channel impulse response or "ideal" for near-ideal impulse response: ', 's'); if strcmpi(response_type, 'random') % Parameters for random impulse response num_taps = input('Enter the number of taps: '); % Number of taps in the channel d...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...