Skip to main content

Pathloss : Large Scale & Small Scale Pathloss and Pathloss Exponent 'n'




In wireless communication, the path loss is proportional to the square of the operating carrier frequency. As a result, the higher the frequency, the greater the path loss. Although path loss is affected by several parameters, including fading, shadowing, angle of arrival (AOA), and angle of departure (AOD), and others. In comparison to lesser frequencies, when the frequency is extremely high, it is easily absorbed by atmospheric gases, vapor, and rain. In the case of higher frequencies, however, the penetration loss is also greater. Path loss is linearly proportional to the carrier frequency, according to Firs' free space path loss. Path loss parameters are often divided into two categories. 1. Large Scale Path loss; 2. Small Scale Path loss. Large-scale path losses are basically path losses due to the distance between transmitter and receiver, shadowing loss, etc. Examples of small-scale path losses due to fading, angle of arrival & angle of departure, etc.


1. Free Space Pathloss:

This phenomenon occurs when a signal travels across empty space. The formula for free space path loss, or FSPL, is
Pathloss = 20log10(λ/4Ï€d) ... (1)

Free space path loss, however, is not completely relevant when discussing real-world wireless communication systems, particularly cellular wireless networks. because the FSPL includes atmospheric path loss. In addition, variable environmental conditions, regardless of TX and RX distance, result in varied path loss. For various environments, the path-loss exponent (PLE) 'n' changes dramatically. Below, we've talked about PLE.

Received signal power in an atmospheric environment can be defined as

Pr  = Pt + Gt + Gr + 20log10(λ/4Ï€d) + atmospheric pathloss……… (2)

                                             Pr = Received Power & Pt = Transmitted Power                                             
                                             Î» = wavelength of carrier frequency
                                             d = distance between Tx & Rx
                                            Gt & Gr = transmitter & receiver antenna gain, respectively
                                            20log10(λ/4Ï€d) = free space path loss at first propagation reference distance d

2. Close-in Path Loss Model:

The close-in path loss model is appropriate for current wireless communication systems operating at sub-6 GHz band or higher and is also applicable for millimeter wave 5G communication.

.... (3)

FSPL (d0) denotes free space path loss at the first few meters (i.e., 1 meter). The letter 'n' stands for path loss exponent. The letter 'd' represents the total path length between the transmitter and the receiver. The shadowing factor is denoted by the symbol, χσ.

This allows us to calculate path loss for current wireless communication bands, such as UWB communication, with excellent precision. This path loss model implies that it is extremely high for the first few meters, then exponentially increases based on the path loss exponent value for that environment (LOS or NLOS, urban or rural, etc.). In 28 GHz transmission, for example, path loss from the first meter is roughly 32 dB Following then, path loss grows by the wireless environment's path loss exponent value.


3.1. Large Scale Pathloss:

The path loss increases as the distance between the transmitter and receiver grow because the signal is attenuated in the atmospheric air as it travels the distance. When a path of equal length is propagated at different frequencies, the path loss is higher at higher frequencies than at lower frequencies. Similarly, path loss for LOS and NLOS pathways differs when TX and RX are positioned at a given distance. Because NLOS pathways typically cover a greater distance than LOS paths. The LOS path connects the transmitter and receiver in a straight line. [Read More about LOS and NLOS Paths]


3.2. Small Scale Pathloss:

Fading, angle of arrival (AOA) at the receiver, angle of departure (AOD) at the receiver, and other factors contribute to small-scale route losses. We send a signal from the transmitter antenna, which then spreads away from the antenna. There must be structures and vegetation there. As a result, the signal is reflected or refracted by the walls of the building or the foliage. The reflected or refracted signal then travels to the receiver via many NLOS paths other than the line of sight (LOS). Finding a LOS path between transmitter and receiver in densely built locations is tough. As a result, the same signal comes as MPCs at the receiver, and we find temporal dispersion for the arrival of the first and last MPCs for broadcasting the same signal from the transmitter side. Fading is caused by these MPCs. There are various types of fading, such as slow or fast fading, frequency selective fading, and so on. Fast fading occurs when the channel impulse response varies rapidly. Frequency selective fading refers to fading that varies according to frequency. We can see distinct fading patterns depending on the frequency. Assume we're looking at a different fading type/property for frequency F1 and a different fading type/property for frequency F2.

Also read about
[1] Difference between AWGN and Rayleigh Fading

Next Page>>

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Comparing Baseband and Passband Implementations of ASK, FSK, and PSK

📘 Overview 🧮 Baseband and Passband Implementations of ASK, FSK, and PSK 🧮 Difference betwen baseband and passband 📚 Further Reading 📂 Other Topics on Baseband and Passband ... 🧮 Baseband modulation techniques 🧮 Passband modulation techniques   Baseband modulation techniques are methods used to encode information signals onto a baseband signal (a signal with frequencies close to zero), allowing for efficient transmission over a communication channel. These techniques are fundamental in various communication systems, including wired and wireless communication. Here are some common baseband modulation techniques: Amplitude Shift Keying (ASK) [↗] : In ASK, the amplitude of the baseband signal is varied to represent different symbols. Binary ASK (BASK) is a common implementation where two different amplitudes represent binary values (0 and 1). ASK is simple but susceptible to noise...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

Constellation Diagrams of M-ary QAM | M-ary Modulation

📘 Overview of QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations 📚 Further Reading 📂 Other Topics on Constellation Diagrams of QAM configurations ... 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 🧮 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK QAM Unlike this, the M-ary PSK signal is modulated with a different phase-shifted version of the carrier signal and varying amplitude levels. Let me give an example for better comprehension. QAM = ASK +...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

📘 Overview & Theory of Pulse Amplitude Moduation (PAM) 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Analog Signal and Digital Signal 🧮 Simulation results for comparison of PAM, PWM, PPM, DM, and PCM 📚 Further Reading 📂 Other Topics on Pulse Amplitude Modulation ... 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of an Analog Signal (2) 🧮 MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data 🧮 Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM)   Pulse Amplitude Modulation (PAM) & Demodulation of an Analog Message Signal MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with per...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate a...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 Coherence Time Calculator 🧮 Relationship between Coherence Time and Delay Spread 🧮 MATLAB Code to find Relationship between Coherence Time and delay Spread 📚 Further Reading   Coherence Bandwidth Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics. coherence bandwidth is  The inverse of Doppler spread delay time, or any spread delay time due to fading in general.  The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel. The two are related by the following formulae: Coherence bandwidth = 1/(delay spread time) Or, Coherence Bandwidth = 1/(root-mean-square delay spread time) (Coherence bandwidth in Hertz) For instance, the coherence bandwidth is...

Definition of the Fourier Series

  1. Introduction Most of the phenomena studied in the domain of Engineering and Science are periodic in nature. For instance, current and voltage in an alternating current circuit. These periodic functions could be analyzed into their constituent components (fundamentals and harmonics) by a process called Fourier analysis. A Fourier series is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series, but not all trigonometric series are Fourier series. Fourier series is used to describe a periodic signal in terms of cosine and sine waves. In other words, it allows us to model any arbitrary periodic signal with a combination of sines and cosines.      Fig: Sine Wave       Fig: Triangular Wave    Fig: Sawtooth Wave      Fig: Square Wave   2. The common form of the Fourier series Sinusoidal functions are periodic over 2Ï€ angular distance. For a perio...