Skip to main content

Sender, Source & Channel Coding, Channel, Receiver in wireless communication - step by step



Mechanism of wireless communication - step by step:

 

 
 

 
 



 
 
 
 
 
 
 
In the above figures, it is shown that in a typical wireless communication system, the original message signal, such as audio, is first converted into an electrical signal. It is then sampled and quantized. Afterward, the quantized signal is encoded into binary numbers. Remember, to transmit the signal through a wireless medium, you modulate the binary bits using a suitable modulation scheme before transmission. On the receiving end, you first demodulate the transmitted signal, then perform source decoding and other necessary operations to retrieve the original message (in this case, the audio) signal.

The range of wireless communication may be as short as 10 meter Bluetooth connection to interplanetary communication or deep space communication. Our daily usable gadgets, like, PDAs, smartphones, computers, satellite TV, etc. - all are example of wireless communication.


History of Wireless Communication:

First wireless conversation occurred in 1880 when Graham Bell and Tainter invented first photophone. It was a telephone that sent audio over a beam of light.Wireless telegraphy system was being developing by Marconi in 1894.Jagadish Chandra Bose invented millimeter wave communication during 1894 - 1896. Which was operating at very high frequencies up to 60 GHz. The work done on millimeter wave by Jagadish Chandra Bose and Lebedev may be dated back to 1890's.The true wireless revolution began in 1990's. Then digital wireless systems was pretty much developed. Then we see commercial usage of computer network, cellular network, mobile phones, laptops, etc.


Modern Wireless Communication Process:




Fig: Process of wireless communication

Wireless communication is a method of communication in which the transmitter and receiver communicate over the air or free space. Between the transmitter and the receiver, there is no wiring for wireless communication. The communication path, which is air or free space in this case, is referred to as a channel. The electrical signal is converted by the transmitter as '0' and '1'. The electric signal then transmits via the channel (air or free space) after a successful modulation procedure. The signal is then received by the receiver. It is practically difficult to recover the same signal that the transmitter sends. Due to attenuation or distortion, the signal becomes corrupted while travelling across the channel. A wireless communication system's fundamentals are as follows.

The following is a list of the various elements involved in the wireless communication process

1.Sender
2.Message
3.Encoding (source & channel coding)
4.Channel
5.Receiver
6.Decoding
7.Acknowlegement / Feedback


Sender:


Here, in communication process sender is who sends messages, files, audio, etc. to indented receiver. Here, sender send his message from smartphones, PCs, etc. using specific application.


Digitization of Message Signal in Communication Process (sampling + quantization):

In general, message signal's source is analogue in nature. Now, the analogue signal is turned into a digital signal (or, the original analogue signal is changed into '0' or'1' bits) by sampling and then quantization). Quantization helps to map the signal into finite levels. We convert analog signals to digital signals using the analog to digital converter (ADC).

There are also some exceptional cases where the source signal is not analog. The acquired images by radar, for example, are not analog signals because the image is a digital signal. After that, we process it and deliver it to the receivers on earth.


Source coding / encoding:

We are aware that the original message file is huge in size. Imagine how much memory is required to store a one-hour voice recording. It's likely that a few GB of memory is required. When we convert it to digital by just sampling at the very beginning of transmission procedure, it still requires a large number of memories to store. On the other hand, we always prefer to transmit a compressed signal over an uncompressed huge file if possible. So, we compress it. We use coding, also known as source coding, to compress the digitalized message signal. Source coding can reduce the size of a message signal. The message signal could be text, audio, or voice, for example. Text, voice, and audio messages can all benefit from source coding. For sending, original message without compressing it, it will take longer and result in more bit errors due to the larger file size. Popular examples of source coding are Huffman coding, LZW coding, etc.


Channel Coding in Communication Process:

After source coding, channel coding allows us to code the compressed message signal with various types of coding, such as forward error correcting (FEC) coding, so that we can recover the required message signal at the receiver terminal even if some bits are lost or distorted. Another illustration is the use of the CRC or cyclic coding technique in OFDM 4G-LTE communication to retrieve the original signal or measure the channel's status.


# Wireless channel are more prone to bit error than wired channels

Digital communication and its application and pictures


Next Page>>

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Simulator for m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance,...

Constellation Diagrams of ASK, PSK, and FSK

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams SNR (dB): 15 Add A...

ASK, FSK, and PSK

๐Ÿ“˜ Overview ๐Ÿ“˜ Amplitude Shift Keying (ASK) ๐Ÿ“˜ Frequency Shift Keying (FSK) ๐Ÿ“˜ Phase Shift Keying (PSK) ๐Ÿ“˜ Which of the modulation techniques—ASK, FSK, or PSK—can achieve higher bit rates? ๐Ÿงฎ MATLAB Codes ๐Ÿ“˜ Simulator for binary ASK, FSK, and PSK Modulation ๐Ÿ“š Further Reading   ASK or OFF ON Keying Ask is a simple (less complex)  Digital Modulation Scheme  where we vary the  modulation  signal's amplitude or voltage by the message signal's amplitude or voltage. We select two levels (two different voltage levels) for transmitting modulated message signals for the exam. And for example, we mapped the signal as two-level  "+5 Volt"  (which is the upper level) and another level,  "0 Volt,"  which is considered as the lower level. Whenever we need to transmit binary bit  "1,"  then the transmitter transmits a signal of  "+5 Volts,"  and when we need to send bit  "0,"  t...

RMS Delay Spread, Excess Delay Spread and Multi-path ...

๐Ÿ“˜ Overview ๐Ÿงฎ Multipath Components or MPCs ๐Ÿงฎ Excess Delay spread ๐Ÿงฎ Power delay Profile ๐Ÿงฎ RMS Delay Spread ๐Ÿงฎ Simulator for Calculating RMS Delay Spread ๐Ÿงฎ Why is there significant multipath in the case of very high frequencies? ๐Ÿงฎ Why RMS Delay Spread is essential for wireless communication? ๐Ÿงฎ Why the Power Delay Profile is essential? ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Signal Processing RMS Delay Spread, Excess Delay Spread, and Multipath... RMS Delay Spread, Excess Delay Spread, and Multipath (MPCs) The fundamental distinction between wireless and wired connections is that in wireless connections signal reaches at receiver thru multipath signal propagation rather than directed transmission like co-axial cable. Wireless Communication has no set communication path between the transmitter and the receiver. The line of sight path, also known as the LOS path, is the shortest and most direc...

Comparisons among ASK, PSK, and FSK | And the definitions of each

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator ๐Ÿงฎ Noise Sensitivity, Bandwidth, Complexity, etc. ๐Ÿงฎ MATLAB Codes ๐Ÿงฎ Some Questions and Answers ๐Ÿ“š Further Reading Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate are same for binary ASK, FSK, and PSK. Select Modulation Type: ASK FSK PSK Baud Rate or Bit Rate (bps): Frequency Deviation (Hz) for FSK: Calculate Bandwidth Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its r...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

๐Ÿ“˜ Overview & Theory ๐Ÿงฎ MATLAB Code 1 ๐Ÿงฎ MATLAB Code 2 ๐Ÿงฎ MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data ๐Ÿงฎ Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM) ๐Ÿ“š Further Reading   Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitu...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator for calculating BER ๐Ÿงฎ MATLAB Codes for calculating theoretical BER ๐Ÿงฎ MATLAB Codes for calculating simulated BER ๐Ÿ“š Further Reading   BER vs. SNR denotes how many bits in error are received in a communication process for a particular Signal-to-noise (SNR) ratio. In most cases, SNR is measured in decibel (dB). For a typical communication system, a signal is often affected by two types of noises 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading In the case of additive white Gaussian noise (AWGN), random magnitude is added to the transmitted signal. On the other hand, Rayleigh fading (due to multipath) attenuates the different frequency components of a signal differently. A good signal-to-noise ratio tries to mitigate the effect of noise.  Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation The theoretical BER for binary ASK (BASK) in an AWGN channel is...