Skip to main content

Sender, Source & Channel Coding, Channel, Receiver in wireless communication - step by step



Mechanism of wireless communication - step by step:

Example: 

 

 Original Analog Message signal

 
 Sampled Message Signal (Digitalized Signal)
 
Quantized Message Signal (Mapped to Finite Signal Levels)


Encoded Signal (after Source Coding)

 
 
Then we perform channel coding to enable error correction during transmission. Then, we apply modulation and transmit the signal through a wireless medium. After receiving the signal, we first demodulate it, then apply channel decoding followed by source decoding, and finally retrieve the original message signal. 
In our case, the source message signal is analog, not digital. However, the process discussed here is applicable to Pulse Code Modulation (PCM) signal. For analog signal transmission, we simply modulate the signal with a higher frequency and then transmit it. On the receiver side, we apply the demodulation process to the received signal and retrieve the original analog message signal. 
 
 
 
 





Modern Wireless Communication Process:

 


 

Fig: Process of wireless communication

 

In the above figures, a typical wireless communication system is illustrated. The original message signal—such as digitized computer data (a bit stream of 0s and 1s)—is first sampled and then quantized. After quantization, the signal undergoes source coding, where it is efficiently encoded into binary form. To transmit this signal over a wireless medium, the binary bits are modulated using an appropriate modulation scheme.

At the receiver end, the signal is first demodulated, followed by source decoding and any additional processing needed to reconstruct the original message signal (e.g., audio). Channel coding, which is typically applied after source coding, enables error detection and correction to combat impairments like attenuation and multi-path fading introduced during transmission.

 

Wireless communication is a method of communication in which the transmitter and receiver communicate over the air or free space. Between the transmitter and the receiver, there is no wiring for wireless communication. The communication path, which is air or free space in this case, is referred to as a channel. The electrical signal is converted by the transmitter as '0' and '1'. The electric signal then transmits via the channel (air or free space) after a successful modulation procedure. The signal is then received by the receiver. It is practically difficult to recover the same signal that the transmitter sends. Due to attenuation or distortion, the signal becomes corrupted while travelling across the channel. A wireless communication system's fundamentals are as follows.

The following is a list of the various elements involved in the wireless communication process

1.Sender
2.Message
3.Encoding (source & channel coding)
4.Channel
5.Receiver
6.Decoding
7.Acknowlegement / Feedback



Sender:


Here, in communication process sender is who sends messages, files, audio, etc. to indented receiver. Here, sender send his message from smartphones, PCs, etc. using specific application.


Digitization of Message Signal in Communication Process (sampling + quantization):

In general, message signal's source is analogue in nature. Now, the analogue signal is turned into a digital signal (or, the original analogue signal is changed into '0' or'1' bits) by sampling and then quantization). Quantization helps to map the signal into finite levels. We convert analog signals to digital signals using the analog to digital converter (ADC).

There are also some exceptional cases where the source signal is not analog. The acquired images by radar, for example, are not analog signals because the image is a digital signal. After that, we process it and deliver it to the receivers on earth.


Source coding / encoding:


We are aware that the original message file is huge in size. Imagine how much memory is required to store a one-hour voice recording. It's likely that a few GB of memory is required. When we convert it to digital by just sampling at the very beginning of transmission procedure, it still requires a large number of memories to store. On the other hand, we always prefer to transmit a compressed signal over an uncompressed huge file if possible. So, we compress it. We use coding, also known as source coding, to compress the digitalized message signal. Source coding can reduce the size of a message signal. The message signal could be text, audio, or voice, for example. Text, voice, and audio messages can all benefit from source coding. For sending, original message without compressing it, it will take longer and result in more bit errors due to the larger file size. Popular examples of source coding are Huffman coding, LZW coding, etc.


Channel Coding:


After source coding, channel coding allows us to code the compressed message signal with various types of coding, such as forward error correcting (FEC) coding, so that we can recover the required message signal at the receiver terminal even if some bits are lost or distorted. Another illustration is the use of the CRC or cyclic coding technique in OFDM 4G-LTE communication to retrieve the original signal or measure the channel's status.


 

Simulation Results:

1. Suppose we are sending a text message signal 'Wireless'
 

Explore This Simulation

Explore Signal Processing Simulations

# Wireless channel are more prone to bit error than wired channels

Digital communication and its application and pictures


Next Page>>

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Constellation Diagrams of M-ary QAM | M-ary Modulation

📘 Overview of QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Online Simulator for M-ary QAM Constellations 📚 Further Reading 📂 Other Topics on Constellation Diagrams of QAM configurations ... 🧮 MATLAB Code for 4-QAM 🧮 MATLAB Code for 16-QAM 🧮 MATLAB Code for m-ary QAM (4-QAM, 16-QAM, 32-QAM, ...) 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM 🧮 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK QAM Unlike M-ary PSK, where the signal is modulated with diff...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate a...

Constellation Diagram of FSK in Detail

📘 Overview 🧮 Simulator for constellation diagram of FSK 🧮 Theory 🧮 MATLAB Code 📚 Further Reading   Binary bits '0' and '1' can be mapped to 'j' and '1' to '1', respectively, for Baseband Binary Frequency Shift Keying (BFSK) . Signals are in phase here. These bits can be mapped into baseband representation for a number of uses, including power spectral density (PSD) calculations. For passband BFSK transmission, we can modulate signal 'j' with a lower carrier frequency and signal '1' with a higher carrier frequency while transmitting over a wireless channel. Let's assume we are transmitting carrier signal fc1 for the transmission of binary bit '1' and carrier signal fc2 for the transmission of binary bit '0'. Simulator for 2-FSK Constellation Diagram Simulator for 2-FSK Constellation Diagram SNR (dB): ...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

MATLAB Code for Zero-Forcing (ZF) Beamforming in 4×4 MIMO Systems

MATLAB Code for Zero-Forcing (ZF) Beamforming in 4×4 MIMO Systems clc; clear; close all; %% Parameters Nt = 4; % Transmit antennas Nr = 4; % Receive antennas (must be >= Nt for ZFBF) numBits = 1e4; % Number of bits per stream SNRdB = 0; % SNR in dB numRuns = 100; % Number of independent runs for averaging %% Precompute noise standard deviation noiseSigma = 10^(-SNRdB / 20); %% Accumulator for total errors totalErrors = 0; for run = 1:numRuns % Generate random bits: [4 x 10000] bits = randi([0 1], Nt, numBits); % BPSK modulation: 0 → +1, 1 → -1 txSymbols = 1 - 2 * bits; % Rayleigh channel matrix: [4 x 4] H = (randn(Nr, Nt) + 1j * randn(Nr, Nt)) / sqrt(2); %% === Zero Forcing Beamforming at Transmitter === W_zf = pinv(H); % Precoding matrix: [Nt x Nr] txPrecoded = W_zf * txSymbols; % Apply ZF precoding % Normalize transmit power (optional but useful) txPrecoded = txPrecoded / sqrt(mean(abs(txPrecoded(:)).^2)); %% Channel transmission with AWGN noise = noiseSigma * (randn(...

Hybrid Beamforming | Page 2

Beamforming Techniques Hybrid Beamforming... Page 1 | Page 2 | clear all; close all; clc; Nt = 64; Nr = 16; NtRF = 4; NrRF = 4; At both the transmitter and receiver ends, there are four RF chains only for a hybrid beamforming system. Alternatively, every 16 antenna elements on the transmitter side is connected to a single RF chain, while every 4 antenna elements on the receiver side are connected to a single RF chain. Mixers, amplifiers, and other critical wireless communication components make up the RF chain. Now, in the case of hybrid beamforming, there can be four different data streams between the transmitter and receiver, as both sides have four RF chains, each of which is accountable for a separate data stream. For Analog Beamforming: All 64 Tx antenna elements create a beam or focus the resultant correlated signal spread from adjacent antennas to a particular direction. Similarly, it may be used for beam...

How Windowing Affects Your Periodogram

The windowed periodogram is a widely used technique for estimating the Power Spectral Density (PSD) of a signal. It enhances the classical periodogram by mitigating spectral leakage through the application of a windowing function. This technique is essential in signal processing for accurate frequency-domain analysis.   Power Spectral Density (PSD) The PSD characterizes how the power of a signal is distributed across different frequency components. For a discrete-time signal, the PSD is defined as the Fourier Transform of the signal’s autocorrelation function: S x (f) = FT{R x (Ï„)} Here, R x (Ï„)}is the autocorrelation function. FT : Fourier Transform   Classical Periodogram The periodogram is a non-parametric PSD estimation method based on the Discrete Fourier Transform (DFT): P x (f) = \(\frac{1}{N}\) X(f) 2 Here: X(f): DFT of the signal x(n) N: Signal length However, the classical periodogram suffers from spectral leakage due to abrupt truncation of the ...