Skip to main content

MIMO, massive MIMO, and Beamforming

 

The term 'MIMO' was originally applied to systems with multiple antennas on both the transmitter (Tx) and receiver (Rx) sides. MIMO is a key component of Wi-Fi 4 and 5, 3G, and 4G cellular networks. This method was introduced to increase the capacity of a channel by sending multiple simultaneous data streams through a single channel. All simultaneous data streams in a MIMO system are encoded orthogonally multiplexed, which reduces interference. Massive MIMO is used extensively in 5G to achieve extremely high capacity and to communicate via beamforming or directional transmission.


1. Some essential characteristics of a MIMO system

1.1. Spatial Division Multiplexing Access (SDMA)

SDMA is a key feature of MIMO, allowing a base station (BS) to communicate with several devices simultaneously (or even using the same frequency) if they are in different locations. There may be no knowledge of channel information at the transmitter.


1.2. Spatial Multiplexing

Another essential feature of MIMO systems is spatial multiplexing. The singular value decomposition of the channel matrix is used to create independent data streams. We assign power to these separate paths using the eigenvalue matrix in this technique.

One of SDMA's difficulties is solved here. Assume two devices are connected to BS in the case of spatial division multiplexing. Now, BS will be perplexed to decide how much power will be utilized by each user; on the other hand, BS can transmit similar power to those mobile devices that are positioned at 6 meters and 100 meters apart, accordingly from the BS station. There is power wastage since a user's device positioned 6 meters away can connect with BS without consuming as much power as a user's device positioned 100 meters away. Because the transmitter has some channel information, this problem is overcome using the spatial multiplexing technique.


2. Mathematical representation of a MIMO system




Here, h11 represents the connection between transmission antenna no 1 and receiver antenna no 1. It also represents the channel gain between transmitter antenna no. 1 and receiver antenna no. 1, and so on.

Mathematically, it is written as,

y=Hx+n

Or,




+ n


Here, y is the received signal vector

         H denotes the channel matrix

         n denotes the noise vector


3. Capacity of a MIMO system

First, we try to calculate channel information using SVD, H=UVH

The channel matrix is divided in this way: U and V are unitary matrices and ∑ diagonal eigenvalue matrices with decreasing order of components. It assists us in allocating the necessary power to each eigen path. Each diagonal eigenmatrix element is responsible for an independent path between the transmitter and receiver. Shortly, we'll write a separate article about SVD.

For now, the system’s capacity is,

C = log2 det(1 + ρ*HQHHbits/s/Hz

Where, Q = VSVH

             S = diagonal matrix derived after allocating power to the diagonal matrix ∑ above.


Benefits of Massive MIMO

1. Improved coverage at cell edge:

Suppose a mobile station (MS) is near the base station (BS). It receives a stronger signal. However, mobile stations are relatively far away from this base station and receive poor energy. Massive mimo solves this problem by using beamforming. The base station focuses more energy on those mobile stations.

2. Improved throughput


3. It enables brand new Millimeter Wave Band
These frequencies lose their energy very quickly due to path loss. Here, beamforming is a means to boost the energy to deliver it to the end user.

#beamforming  # mimo beamforming


People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the s...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK and QAM orders to be tested psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols data_symbols = randi([0, psk_order-1], 1, num_symb...

Theoretical BER vs SNR for BPSK

Let's simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel.  Key Points Fig 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗] BPSK Modulation: Transmits one of two signals: +√Eb ​ or -√Eb , where Eb​ is the energy per bit. These signals represent binary 0 and 1 . AWGN Channel: The channel adds Gaussian noise with zero mean and variance N0/2 (where N0 ​ is the noise power spectral density). Receiver Decision: The receiver decides if the received signal is closer to +√Eb​ (for bit 0) or -√Eb​ (for bit 1) . Bit Error Rate (BER) The probability of error (BER) for BPSK is given by a function called the Q-function. The Q-function Q(x) measures the tail probability of the normal distribution, i.e., the probability that a Gaussian random variable exceeds a certain value x.  Formula for BER: BER=Q(...

Constellation Diagrams of ASK, PSK, and FSK

Modulation ASK, FSK & PSK Constellation BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  This article will primarily discuss constellation diagrams, as well as what constellation diagrams tell us and the significance of constellation diagrams. Constellation diagrams can often demonstrate how the amplitude and phase of signals or symbols differ. These two characteristics lessen the interference between t...

Theoretical and simulated BER vs. SNR for ASK, FSK, and PSK

  BER vs. SNR denotes how many bits in error are received in a communication process for a particular Signal-to-noise (SNR) ratio. In most cases, SNR is measured in decibel (dB). For a typical communication system, a signal is often affected by two types of noises 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading In the case of additive white Gaussian noise (AWGN), random magnitude is added to the transmitted signal. On the other hand, Rayleigh fading (due to multipath) attenuates the different frequency components of a signal differently. A good signal-to-noise ratio tries to mitigate the effect of noise.  Calculate BER for Binary ASK Modulation The theoretical BER for binary ASK (BASK) in an AWGN channel is given by: BER  = (1/2) * erfc(0.5 * sqrt(SNR_ask));   Enter SNR (dB): Calculate BER BER vs. SNR curves for ASK, FSK, and PSK Calculate BER for Binary FSK Modulation The theoretical BER for binary FSK (BFSK) in a...

OFDM in MATLAB

  MATLAB Script % The code is written by SalimWireless.Com 1. Initialization clc; clear all; close all; 2. Generate Random Bits % Generate random bits numBits = 100; bits = randi([0, 1], 1, numBits); 3. Define Parameters % Define parameters numSubcarriers = 4; % Number of subcarriers numPilotSymbols = 3; % Number of pilot symbols cpLength = ceil(numBits / 4); % Length of cyclic prefix (one-fourth of the data length) 4. Add Cyclic Prefix % Add cyclic prefix dataWithCP = [bits(end - cpLength + 1:end), bits]; 5. Insert Pilot Symbols % Insert pilot symbols pilotSymbols = ones(1, numPilotSymbols); % Example pilot symbols (could be any pattern) dataWithPilots = [pilotSymbols, dataWithCP];   6. Perform OFDM Modulation (IFFT) % Perform OFDM modulation (IFFT) dataMatrix = reshape(dataWithPilots, numSubcarriers, []); ofdmSignal = ifft(dataMatrix, numSubcarriers); ofdmSignal = reshape(ofdmSignal, 1, []); 7. Display the Generated Data % Display the generated data disp("Original Bits:"); ...

Why is Time-bandwidth Product Important?

Time-Bandwidth Product (TBP) The time-bandwidth product (TBP) is defined as: TBP = Δ f ⋅ Δ t Δf (Bandwidth) : The frequency bandwidth of the signal, representing the range of frequencies over which the signal is spread. Δt (Time duration) : The duration for which the signal is significant, i.e., the time interval during which the signal is non-zero. The TBP is a measure of the "spread" of the signal in both time and frequency domains. A higher TBP means the signal is both spread over a larger time period and occupies a wider frequency range.     To calculate the period of a signal with finite bandwidth, Heisenberg’s uncertainty principle plays a vital role where the time-bandwidth product indicates the processing gain of the signal. We apply spread spectrum techniques in wireless communication for various reasons, such as interference resili...