Skip to main content

Drone Detection via Low Complexity Zadoff-Chu Sequence Root Estimation


Summary

Based on 
Yeung, 2025: Yeung, C.K.A., Lo, B.F. and Torborg, S. Drone detection via low complexity zadoff-chu sequence root estimation. In 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC) (pp. 1-4). IEEE, 2020, January.
 

The rise in drone usage—from agriculture and delivery to surveillance and racing—has introduced major privacy and security challenges. Modern drones often use OFDM (Orthogonal Frequency Division Multiplexing) with Zadoff-Chu (ZC) sequences for synchronization. While powerful, detecting these sequences blindly (without knowing their parameters) remains a challenge.

Aim

This article presents a low-complexity solution to blindly detect ZC sequences used by unknown drones. The approach uses a novel double differential method that works without large correlation banks, making it efficient and real-time capable.

ZC Sequence Fundamentals

A ZC sequence of prime length P and root u is defined by:

x_u[n] = exp(-jπu·n(n+1)/P),  0 ≤ n < P
  • P is an odd prime (e.g., 599, 1021).
  • Each root u creates a distinct ZC sequence.
  • ZC sequences have zero autocorrelation and low cross-correlation—ideal for synchronization.

Time Domain Detection with Unknown Root

The paper proposes using single and double differential operators to estimate the ZC root:


y_d[n]   = y[n] * conj(y[n-1])
This is equivalent to a conjugate delay multiply. It’s a way to estimate and remove frequency offset by exploiting the phase difference between adjacent samples.
 
 y_dd[n]  = y_d[n] * conj(y_d[n-1])
 Another conjugate delay product — isolates residual modulation, often connected with root index  in ZC sequences.
 

These steps eliminate frequency offset and isolate the root information. The detection metric is:


γ_td[n] = ∑ y_dd[n] / sqrt(∑ |y_dd[n]|²)
û = round(P × angle(γ_td[n*]) / 2π)
  

Conjugate Delay Product

The conjugate delay multiplication is defined as:

\( y_d[n] = y[n] \cdot \text{conj}(y[n-1]) \)

Expanding assuming \( y[n] = A e^{j\omega n} \):

\( y_d[n] = A e^{j\omega n} \cdot A e^{-j\omega(n-1)} = A^2 e^{j\omega} \)

Key Idea:

  • The result has a constant phase \( \omega \): this is the frequency.
  • This operation isolates the frequency difference between adjacent samples.

Second Conjugate Delay (Double Differencing)

Applying the same idea again:

\( y_{dd}[n] = y_d[n] \cdot \text{conj}(y_d[n-1]) \)

This Second Differencing:

  • Removes residual modulation — small leftover variations in phase.
  • The remaining structure is often linked to properties like the Zadoff-Chu sequence’s root index \( u \).

SNR Bounds

The effective SNR of this method is:

SNR_td = (P - 2) · |h|⁸ / E[|w_dd[n]|²]

Asymptotic bounds:

High SNR: SNR_td ≥ (P - 2)/(8 + 2√10)
Low SNR: SNR_td ≥ (P - 2)·|h|⁸ / (2σ⁸)

Frequency Domain ZC Without Guard Band

When ZC sequences occupy all subcarriers, the detection is similar. Using inverse DFT properties and root inverses:


γ_fd1[n] = ∑ Y_dd[n] / sqrt(∑ |Y_dd[n]|²)
û⁻¹ = round(P × angle(γ_fd1[n*]) / 2π)
û = modular_inverse(û⁻¹, P)
  

SNR bounds remain the same as time domain.

Frequency Domain ZC with Guard Bands

In practical systems, edge subcarriers are unused. ZC detection must then work with only the middle subcarriers:


Y[k] = x_u[k - (P-1)/2] · exp(-j2πΔk/N) + W[k]
Y_dd[k] = exp(-2jπu/P)
γ_fd2 = ∑ Y_dd[k]
û = round(P × angle(γ_fd2[(P-1)/2]) / 2π)
  

CFO (Carrier Frequency Offset) has a stronger negative effect here than in time domain methods.

Simulation Results

Monte Carlo simulations (30,000 runs) verify theoretical predictions:

  • Time and frequency domain methods reach 1% error rate at 15 dB SNR.
  • CFO has minimal impact in time domain and full-bandwidth frequency domain.
  • Guard-banded frequency domain suffers significantly under CFO.

Conclusion

The proposed double differential blind ZC detection method is a major step toward low-cost, real-time drone detection for consumer applications. It's lightweight, scalable, and resilient to synchronization challenges—ideal for future smart cities and surveillance tools.



Further Reading

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

Theoretical vs. simulated BER vs. SNR for ASK, FSK, and PSK

📘 Overview 🧮 Simulator for calculating BER 🧮 MATLAB Codes for calculating theoretical BER 🧮 MATLAB Codes for calculating simulated BER 📚 Further Reading BER vs. SNR denotes how many bits in error are received for a given signal-to-noise ratio, typically measured in dB. Common noise types in wireless systems: 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading AWGN adds random noise; Rayleigh fading attenuates the signal variably. A good SNR helps reduce these effects. Simulator for calculating BER vs SNR for binary ASK, FSK, and PSK Calculate BER for Binary ASK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary FSK Modulation Enter SNR (dB): Calculate BER Calculate BER for Binary PSK Modulation Enter SNR (dB): Calculate BER BER vs. SNR Curves MATLAB Code for Theoretical BER % The code is written by SalimWireless.Com clc; clear; close all; % SNR v...

Channel Impulse Response (CIR)

Channel Impulse Response (CIR) 📘 Overview & Theory 📘 How does the channel impulse response affect the signal? 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing CIR, Doppler Shift & Gaussian Random Variable  The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal.   What is the Channel Impulse Response (CIR) ? It describes the behavior of a communication channel in response to an impulse signal. In signal processing,  an impulse signal has zero amplitude at all other times and amplitude  ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this.  ...(i) δ( t) now has a very intriguing characteristic. The answer is 1 when the Fourier Transform of  δ(...

MIMO Channel Matrix | Rank and Condition Number

MIMO / Massive MIMO MIMO Channel Matrix | Rank and Condition...   The channel matrix in wireless communication is a matrix that describes the impact of the channel on the transmitted signal. The channel matrix can be used to model the effects of the atmospheric or underwater environment on the signal, such as the absorption, reflection or scattering of the signal by surrounding objects. When addressing multi-antenna communication, the term "channel matrix" is used. Let's assume that only one TX and one RX are in communication and there's no surrounding object. Here, in our case, we can apply the proper threshold condition to a received signal and get the original transmitted signal at the RX side. However, in real-world situations, we see signal path blockage, reflections, etc.,  (NLOS paths [↗]) more frequently. The obstruction is typically caused by building walls, etc. Multi-antenna communication was introduced to add...

Gaussian minimum shift keying (GMSK)

📘 Overview & Theory 🧮 Simulator for GMSK 🧮 MSK and GMSK: Understanding the Relationship 🧮 MATLAB Code for GMSK 📚 Simulation Results for GMSK 📚 Q & A and Summary 📚 Further Reading Dive into the fascinating world of GMSK modulation, where continuous phase modulation and spectral efficiency come together for robust communication systems! Core Process of GMSK Modulation Phase Accumulation (Integration of Filtered Signal) After applying Gaussian filtering to the Non-Return-to-Zero (NRZ) signal, we integrate the smoothed NRZ signal over time to produce a continuous phase signal: θ(t) = ∫ 0 t m filtered (τ) dτ This integration is crucial for avoiding abrupt phase transitions, ensuring smooth and continuous phase changes. Phase Modulation The next step involves using the phase signal to modulate a...

Theoretical BER vs SNR for BPSK

Let's simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel.  Key Points Fig 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗] BPSK Modulation: Transmits one of two signals: +√Eb ​ or -√Eb , where Eb​ is the energy per bit. These signals represent binary 0 and 1 . AWGN Channel: The channel adds Gaussian noise with zero mean and variance N0/2 (where N0 ​ is the noise power spectral density). Receiver Decision: The receiver decides if the received signal is closer to +√Eb​ (for bit 0) or -√Eb​ (for bit 1) . Bit Error Rate (BER) The probability of error (BER) for BPSK is given by a function called the Q-function. The Q-function Q(x) measures the tail probability of the normal distribution, i.e., the probability that a Gaussian random variable exceeds a certain value x.  Understanding the Q...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...