Skip to main content

What is Frequency Resolution?

 

Formula for Frequency Resolution (in general)

The frequency resolution is the smallest frequency difference between two adjacent frequency points in your sampling range. It is determined by the total frequency range and the number of frequency samples N. The formula for the frequency resolution (or step size) Δf is:

Δf = (fmax - fmin) / (N - 1)

Where:

  • fmin is the minimum frequency in the range (in this case, -50 Hz).
  • fmax is the maximum frequency in the range (in this case, 50 Hz).
  • N is the number of frequency points / frequency bins.

Using the Given Values:

From the function:

  • fmin = -50 Hz
  • fmax = 50 Hz
  • N = 1000

The frequency resolution is:

Δf = (50 - (-50)) / (1000 - 1) = 100 / 999 ≈ 0.1001 Hz

 

Understanding Frequency Resolution in Signal Processing

Alternative Formula Using Time Duration

Another common way to define frequency resolution, especially in time-domain signal processing, is:

Δf = 1 / T

Where:

  • T is the total time duration of the sampled signal.

FFT and Frequency Bins

When applying the FFT to a signal sampled at a rate fs, the spectrum is divided into N frequency bins:

Δf = fs / N

This version assumes you’re analyzing the signal in the range of 0 to fs (for one-sided spectrum) or -fs/2 to +fs/2 (for two-sided spectrum).


Why Frequency Resolution Matters

A fine frequency resolution enables better separation of closely spaced frequency components. It is critical in applications such as:

  • Biomedical signal processing (e.g., ECG, EEG analysis)
  • Spectrum sensing in wireless communications
  • Speech recognition and audio filtering
  • Fault detection in rotating machinery using vibration data

Common Misconception:

Many believe that increasing the number of FFT points alone increases frequency resolution. While it improves the frequency axis detail, true resolution is governed by signal duration or sampling span, not zero-padding.

 

Further Reading

 

People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

MATLAB Code for BER performance of QPSK with BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc

📘 Overview 🧮 MATLAB Codes 🧮 Theory 🧮 Are QPSK and 4-PSK same? 📚 Further Reading   QPSK offers double the data rate of BPSK while maintaining a similar bit error rate at low SNR when Gray coding is used. It shares spectral efficiency with 4-QAM and can outperform 4-QAM or 16-QAM in very noisy channels. QPSK is widely used in practical wireless systems, often alongside QAM in adaptive modulation schemes [Read more...]   MATLAB Code clear all; close all; % Set parameters for QAM snr_dB = -20:2:20; % SNR values in dB qam_orders = [4, 16, 64, 256]; % QAM modulation orders % Loop through each QAM order and calculate theoretical BER figure; for qam_order = qam_orders     % Calculate theoretical BER using berawgn for QAM     ber_qam = berawgn(snr_dB, 'qam', qam_order);     % Plot the results for QAM     semilogy(snr_dB, ber_qam, 'o-', 'DisplayName', sprintf('%d-QAM', qam_order));  ...

Differences between Baseband and Passband Modulation Techniques

📘 Overview 🧮 Difference betwen baseband and passband 🧮 Baseband modulation techniques 🧮 Passband modulation techniques 📚 Further Reading   1. Frequency Translation Baseband Modulation: The signal occupies the lower end of the frequency spectrum, close to DC (0 Hz). Noise at these frequencies (such as 1/f noise or flicker noise) can significantly impact the signal.  Passband Modulation: The signal is shifted to a higher frequency range by modulating it with a carrier frequency. This translation can help to avoid low-frequency noise and interference, which are often more prevalent and stronger in the baseband. 2. Bandpass Filtering Baseband Modulation: The filtering of baseband signals is often limited by the need to preserve the low-frequency components of the signal. This makes it difficult to filter out low-frequency noise effectively. Passband Modulation: The modulated signal can be passed through a bandpass filter centered around t...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Simulator for m-ary QAM and m-ary PSK 🧮 MATLAB Codes 📚 Further Reading Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance,...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview 🧮 Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory 🧮 MATLAB Codes 📚 Further Reading BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams SNR (dB): 15 Add A...

MATLAB code for MSK

📘 Overview 🧮 MATLAB Codes 🧮 Theory 🧮 Simulator for MSK 📚 Further Reading  Copy the MATLAB Code from here % The code is developed by SalimWireless.com clc; clear; close all; % Define a bit sequence bitSeq = [0, 1, 0, 0, 1, 1, 1, 0, 0, 1]; % Perform MSK modulation [modSignal, timeVec] = modulateMSK(bitSeq, 10, 10, 10000); % Plot the modulated signal subplot(2,1,1); samples = 1:numel(bitSeq); stem(samples, bitSeq); title('Original message signal'); xlabel('Time (s)'); ylabel('Amplitude'); % Plot the modulated signal subplot(2,1,2); samples = 1:10000; plot(samples / 10000, modSignal(1:10000)); title('MSK modulated signal'); xlabel('Time (s)'); ylabel('Amplitude'); % Perform MSK demodulation demodBits = demodMSK(modSignal, 10, 10, 10000); % Function to perform MSK modulation function [signal, timeVec] = modulateMSK(bits, carrierFreq, baudRate, sampleFreq) % Converts a binary bit sequence in...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Overview 🧮 Simulator 🧮 Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Codes 🧮 Some Questions and Answers 📚 Further Reading Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate are same for binary ASK, FSK, and PSK. Select Modulation Type: ASK FSK PSK Baud Rate or Bit Rate (bps): Frequency Deviation (Hz) for FSK: Calculate Bandwidth Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its r...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer...