Skip to main content

Theoretical BER vs SNR for BPSK


Theoretical Bit Error Rate (BER) vs Signal-to-Noise Ratio (SNR) for BPSK in AWGN Channel

Let’s simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel.


Key Points

Constellation diagrams of BASK, BFSK, and BPSK
Fig. 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗]

BPSK Modulation

Transmits one of two signals: +√Eb or −√Eb, where Eb is the energy per bit. These signals represent binary 0 and 1.


AWGN Channel

The channel adds Gaussian noise with zero mean and variance N₀/2 (where N₀ is the noise power spectral density).


Receiver Decision

The receiver decides if the received signal is closer to +√Eb (for bit 0) or −√Eb (for bit 1).


Bit Error Rate (BER)

The probability of error (BER) for BPSK is given by the Q-function, which measures the tail probability of the normal distribution — i.e., the probability that a Gaussian random variable exceeds a certain value.


Understanding the Q-function

The Q-function, Q(x), gives the probability that a standard normal (Gaussian) random variable exceeds x. In this context, it gives the probability that noise pushes the received signal across the wrong decision boundary, resulting in a bit error.

For BPSK, bits ‘0’ and ‘1’ map to +1 and −1, respectively. The probability of error is the probability that noise exceeds a threshold, depending on the signal’s distance from zero.

Calculate the Probability of Error using Q-function

For a Gaussian noise with mean = 0 and variance = N₀/2, the probability of error is:

Pb = Q(1/σ)

where σ = √(N₀/2)

So, Pb = Q(√(2/N₀))

Since SNR = Eb/N₀, we get:

Pb = Q(√(2 × SNR)) or equivalently Q(√(2Eb/N₀)).


Formula for BER

BER = Q(√(2Eb/N₀))

Here, Eb/N₀ is the energy per bit to noise power spectral density ratio, also known as the bit SNR.


Simplified Steps

  1. Calculate the SNR: γb = Eb/N₀
  2. Find the Q-function value: BER = Q(√(2γb))

Intuition

For High SNR (γb is large):

The argument of the Q-function √(2γb) becomes large, Q(x) is small ⇒ fewer errors. Result: BER is low.

For Low SNR (γb is small):

The argument of the Q-function √(2γb) is small, Q(x) is larger ⇒ more errors. Result: BER is higher.


Approximation for High SNR

For large SNR, the BER can be approximated using the complementary error function (erfc):

Q(x) ≈ ½ erfc(x/√2)

Thus, BER ≈ ½ erfc(√γb)

So, the final formula for BPSK in AWGN is:

BER = Q(√(2Eb/N₀))

Higher SNR ⇒ lower BER ⇒ better performance and fewer errors.


MATLAB Code: Theoretical BER vs SNR for BPSK

% The code is written by SalimWireless.Com 

clc;
clear;
close all;

snrdb = 0:1:10;
snrlin = 10.^(snrdb./10);
tber = 0.5 .* erfc(sqrt(snrlin));
semilogy(snrdb, tber, '-bh')
grid on
title('BPSK with AWGN');
xlabel('Signal to noise ratio');
ylabel('Bit error rate');

Output

Theoretical BER vs SNR for BPSK in AWGN
Figure: Theoretical BER vs SNR for BPSK

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

OFDM Symbols and Subcarriers Explained

This article explains how OFDM (Orthogonal Frequency Division Multiplexing) symbols and subcarriers work. It covers modulation, mapping symbols to subcarriers, subcarrier frequency spacing, IFFT synthesis, cyclic prefix, and transmission. Step 1: Modulation First, modulate the input bitstream. For example, with 16-QAM , each group of 4 bits maps to one QAM symbol. Suppose we generate a sequence of QAM symbols: s0, s1, s2, s3, s4, s5, …, s63 Step 2: Mapping Symbols to Subcarriers Assume N sub = 8 subcarriers. Each OFDM symbol in the frequency domain contains 8 QAM symbols (one per subcarrier): Mapping (example) OFDM symbol 1 → s0, s1, s2, s3, s4, s5, s6, s7 OFDM symbol 2 → s8, s9, s10, s11, s12, s13, s14, s15 … OFDM sym...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Bartlett Method in MATLAB

Steps to calculate Spectral power density using Bartlett Method 'M' is the length of each segment for the Bartlett method, set to 100 samples. 'K' is the number of segments obtained by dividing the total number of samples N by the segment length 'M'. psd_bartlett_broadband is initialized to store the accumulated periodogram. For each segment k, x_k extracts the k-th segment of the broadband signal. P_k computes the periodogram of the k-th segment using the FFT. The periodograms are accumulated and averaged over all segments. The PSD is plotted in dB/Hz by converting the power values to decibels using 10 * log10.   MATLAB Script clc; clear; close all; % Parameters fs = 1000; % Sampling frequency t = 0:1/fs:1-1/fs; % Time vector N = length(t); % Number of samples % Generate synthetic broadband ARMA process arma_order = [2, 2]; % ARMA(p,q) order a = [1, -0.75, 0....

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ... UGC-NET (Electronics Science, Subject code: 88) UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Question With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Question With Answer Key Download Pdf [December 2019] UGC Net Elec...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 MATLAB Code s 📚 Further Reading Coherence Bandwidth Coherence bandwidth is a concept in wireless communication and signal processing that relates to the frequency range over which a wireless channel remains approximately constant in terms of its characteristics. Coherence bandwidth is inversely related to the delay spread time (e.g., RMS delay spread). The coherence bandwidth is related to the delay spread of the channel, which is a measure of the time it takes for signals to traverse the channel due to multipath. The two are related by the following approximation: Coherence Bandwidth ≈ 1/(delay spread time) Or, Coherence Bandwidth ≈ 1/(root-mean-square delay spread time) (Coherence bandwidth in Hertz) For instance, if the root-mean-square delay spread is 500 ns (i.e., {1/(2*10^6)} seconds), the coherence bandwidth is approximately 2 MHz (1 / 500e-9) in ...

Pulse Position Modulation (PPM)

Pulse Position Modulation (PPM) is a type of signal modulation in which M message bits are encoded by transmitting a single pulse within one of 2á´¹ possible time positions within a fixed time frame. This process is repeated every T seconds , resulting in a data rate of M/T bits per second . PPM is a form of analog modulation where the position of each pulse is varied according to the amplitude of the sampled modulating signal , while the amplitude and width of the pulses remain constant . This means only the timing (position) of the pulse carries the information. PPM is commonly used in optical and wireless communications , especially where multipath interference is minimal or needs to be reduced. Because the information is carried in timing , it's more robust in some noisy environments compared to other modulation schemes. Although PPM can be used for analog signal modulation , it is also used in digital communications where each pulse position represents a symbol or bit...