Skip to main content

Theoretical BER vs SNR for BPSK


Theoretical Bit Error Rate (BER) vs Signal-to-Noise Ratio (SNR) for BPSK in AWGN Channel

Let’s simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel.


Key Points

Constellation diagrams of BASK, BFSK, and BPSK
Fig. 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗]

BPSK Modulation

Transmits one of two signals: +√Eb or −√Eb, where Eb is the energy per bit. These signals represent binary 0 and 1.


AWGN Channel

The channel adds Gaussian noise with zero mean and variance N₀/2 (where N₀ is the noise power spectral density).


Receiver Decision

The receiver decides if the received signal is closer to +√Eb (for bit 0) or −√Eb (for bit 1).


Bit Error Rate (BER)

The probability of error (BER) for BPSK is given by the Q-function, which measures the tail probability of the normal distribution — i.e., the probability that a Gaussian random variable exceeds a certain value.


Understanding the Q-function

The Q-function, Q(x), gives the probability that a standard normal (Gaussian) random variable exceeds x. In this context, it gives the probability that noise pushes the received signal across the wrong decision boundary, resulting in a bit error.

For BPSK, bits ‘0’ and ‘1’ map to +1 and −1, respectively. The probability of error is the probability that noise exceeds a threshold, depending on the signal’s distance from zero.

Calculate the Probability of Error using Q-function

For a Gaussian noise with mean = 0 and variance = N₀/2, the probability of error is:

Pb = Q(1/σ)

where σ = √(N₀/2)

So, Pb = Q(√(2/N₀))

Since SNR = Eb/N₀, we get:

Pb = Q(√(2 × SNR)) or equivalently Q(√(2Eb/N₀)).


Formula for BER

BER = Q(√(2Eb/N₀))

Here, Eb/N₀ is the energy per bit to noise power spectral density ratio, also known as the bit SNR.


Simplified Steps

  1. Calculate the SNR: γb = Eb/N₀
  2. Find the Q-function value: BER = Q(√(2γb))

Intuition

For High SNR (γb is large):

The argument of the Q-function √(2γb) becomes large, Q(x) is small ⇒ fewer errors. Result: BER is low.

For Low SNR (γb is small):

The argument of the Q-function √(2γb) is small, Q(x) is larger ⇒ more errors. Result: BER is higher.


Approximation for High SNR

For large SNR, the BER can be approximated using the complementary error function (erfc):

Q(x) ≈ ½ erfc(x/√2)

Thus, BER ≈ ½ erfc(√γb)

So, the final formula for BPSK in AWGN is:

BER = Q(√(2Eb/N₀))

Higher SNR ⇒ lower BER ⇒ better performance and fewer errors.


MATLAB Code: Theoretical BER vs SNR for BPSK

% The code is written by SalimWireless.Com 

clc;
clear;
close all;

snrdb = 0:1:10;
snrlin = 10.^(snrdb./10);
tber = 0.5 .* erfc(sqrt(snrlin));
semilogy(snrdb, tber, '-bh')
grid on
title('BPSK with AWGN');
xlabel('Signal to noise ratio');
ylabel('Bit error rate');

Output

Theoretical BER vs SNR for BPSK in AWGN
Figure: Theoretical BER vs SNR for BPSK

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Channel Impulse Response (CIR)

📘 Overview & Theory 📘 How CIR Affects the Signal 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading What is the Channel Impulse Response (CIR)? The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal. It describes the behavior of a communication channel in response to an impulse signal. In signal processing, an impulse signal has zero amplitude at all other times and amplitude ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this. Fig: Dirac Delta Function The result of this calculation is that all frequencies are responded to equally by δ(t) . This is crucial since we never know which frequenci...

Power Spectral Density Calculation Using FFT in MATLAB

📘 Overview 🧮 Steps to calculate the PSD of a signal 🧮 MATLAB Codes 📚 Further Reading Power spectral density (PSD) tells us how the power of a signal is distributed across different frequency components, whereas Fourier Magnitude gives you the amplitude (or strength) of each frequency component in the signal. Steps to calculate the PSD of a signal Firstly, calculate the first Fourier transform (FFT) of a signal Then, calculate the Fourier magnitude of the signal The power spectrum is the square of the Fourier magnitude To calculate power spectrum density (PSD), divide the power spectrum by the total number of samples and the frequency resolution. {Frequency resolution = (sampling frequency / total number of samples)} Sampling frequency (fs): The rate at which the continuous-time signal is sampled (in Hz). ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

Theoretical BER vs SNR for binary ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Codes 📚 Further Reading Theoretical BER vs SNR for Amplitude Shift Keying (ASK) The theoretical Bit Error Rate (BER) for binary ASK depends on how binary bits are mapped to signal amplitudes. For typical cases: If bits are mapped to 1 and -1, the BER is: BER = Q(√(2 × SNR)) If bits are mapped to 0 and 1, the BER becomes: BER = Q(√(SNR / 2)) Where: Q(x) is the Q-function: Q(x) = 0.5 × erfc(x / √2) SNR : Signal-to-Noise Ratio N₀ : Noise Power Spectral Density Understanding the Q-Function and BER for ASK Bit '0' transmits noise only Bit '1' transmits signal (1 + noise) Receiver decision threshold is 0.5 BER is given by: P b = Q(0.5 / σ) , where σ = √(N₀ / 2) Using SNR = (0.5)² / N₀, we get: BER = Q(√(SNR / 2)) Theoretical BER vs ...