Skip to main content

Theoretical BER vs SNR for BPSK


Theoretical Bit Error Rate (BER) vs Signal-to-Noise Ratio (SNR) for BPSK in AWGN Channel

Let’s simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel.


Key Points

Constellation diagrams of BASK, BFSK, and BPSK
Fig. 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗]

BPSK Modulation

Transmits one of two signals: +√Eb or −√Eb, where Eb is the energy per bit. These signals represent binary 0 and 1.


AWGN Channel

The channel adds Gaussian noise with zero mean and variance N₀/2 (where N₀ is the noise power spectral density).


Receiver Decision

The receiver decides if the received signal is closer to +√Eb (for bit 0) or −√Eb (for bit 1).


Bit Error Rate (BER)

The probability of error (BER) for BPSK is given by the Q-function, which measures the tail probability of the normal distribution — i.e., the probability that a Gaussian random variable exceeds a certain value.


Understanding the Q-function

The Q-function, Q(x), gives the probability that a standard normal (Gaussian) random variable exceeds x. In this context, it gives the probability that noise pushes the received signal across the wrong decision boundary, resulting in a bit error.

For BPSK, bits ‘0’ and ‘1’ map to +1 and −1, respectively. The probability of error is the probability that noise exceeds a threshold, depending on the signal’s distance from zero.

Calculate the Probability of Error using Q-function

For a Gaussian noise with mean = 0 and variance = N₀/2, the probability of error is:

Pb = Q(1/σ)

where σ = √(N₀/2)

So, Pb = Q(√(2/N₀))

Since SNR = Eb/N₀, we get:

Pb = Q(√(2 × SNR)) or equivalently Q(√(2Eb/N₀)).


Formula for BER

BER = Q(√(2Eb/N₀))

Here, Eb/N₀ is the energy per bit to noise power spectral density ratio, also known as the bit SNR.


Simplified Steps

  1. Calculate the SNR: γb = Eb/N₀
  2. Find the Q-function value: BER = Q(√(2γb))

Intuition

For High SNR (γb is large):

The argument of the Q-function √(2γb) becomes large, Q(x) is small ⇒ fewer errors. Result: BER is low.

For Low SNR (γb is small):

The argument of the Q-function √(2γb) is small, Q(x) is larger ⇒ more errors. Result: BER is higher.


Approximation for High SNR

For large SNR, the BER can be approximated using the complementary error function (erfc):

Q(x) ≈ ½ erfc(x/√2)

Thus, BER ≈ ½ erfc(√γb)

So, the final formula for BPSK in AWGN is:

BER = Q(√(2Eb/N₀))

Higher SNR ⇒ lower BER ⇒ better performance and fewer errors.


MATLAB Code: Theoretical BER vs SNR for BPSK

% The code is written by SalimWireless.Com 

clc;
clear;
close all;

snrdb = 0:1:10;
snrlin = 10.^(snrdb./10);
tber = 0.5 .* erfc(sqrt(snrlin));
semilogy(snrdb, tber, '-bh')
grid on
title('BPSK with AWGN');
xlabel('Signal to noise ratio');
ylabel('Bit error rate');

Output

Theoretical BER vs SNR for BPSK in AWGN
Figure: Theoretical BER vs SNR for BPSK

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...

Periodogram in MATLAB

Power Spectral Density Estimation Using the Periodogram Step 1: Signal Representation Let the signal be x[n] , where: n = 0, 1, ..., N-1 (discrete-time indices), N is the total number of samples. Step 2: Compute the Discrete-Time Fourier Transform (DTFT) The DTFT of x[n] is: X(f) = ∑ x[n] e -j2Ï€fn For practical computation, the Discrete Fourier Transform (DFT) is used: X[k] = ∑ x[n] e -j(2Ï€/N)kn , k = 0, 1, ..., N-1 k represents discrete frequency bins, f_k = k/N * f_s , where f_s is the sampling frequency. Step 3: Compute Power Spectral Density (PSD) The periodogram estimates the PSD as: S_x(f_k) = (1/N) |X[k]|² S_x(f_k) ...

MATLAB Code for Rms Delay Spread

RMS delay spread is crucial when you need to know how much the signal is dispersed in time due to multipath propagation, the spread (variance) around the average. In high-data-rate systems like LTE, 5G, or Wi-Fi, even small time dispersions can cause ISI. RMS delay spread is directly related to the amount of ISI in such systems. RMS Delay Spread [↗] Delay Spread Calculator Enter delays (ns) separated by commas: Enter powers (dB) separated by commas: Calculate   The above calculator Converts Power to Linear Scale: It correctly converts the power values from decibels (dB) to a linear scale. Calculates Mean Delay: It accurately computes the mean excess delay, which is the first moment of the power delay profile. Calculates RMS Delay Spread: It correctly calculates the RMS delay spread, defined as the square root of the second central moment of the power delay profile.   MATLAB Code  clc...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Difference between AWGN and Rayleigh Fading

📘 Introduction, AWGN, and Rayleigh Fading 🧮 Simulator for the effect of AWGN and Rayleigh Fading on a BPSK Signal 🧮 MATLAB Codes 📚 Further Reading Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or Additive White Gaussian Noise (AWGN) in Wireless Channels , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way. Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal x is multiplied by the channel coeffic...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ... UGC-NET (Electronics Science, Subject code: 88) UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2024]  UGC Net Paper 1 With Answer Key Download Pdf [Sep 2024] with full explanation UGC Net Electronic Science Question Paper With Answer Key Download Pdf [Sep 2024]  UGC Net Paper 1 With Answer Key Download Pdf [June 2023] with full explanation UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2023] with full explanation UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [June 2022] UGC Net Electronic Science Question Paper With Answer Key Download Pdf [December 2021] ...