Skip to main content

Theoretical BER vs SNR for BPSK


Let's simplify the explanation for the theoretical Bit Error Rate (BER) versus Signal-to-Noise Ratio (SNR) for Binary Phase Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel. 

Key Points





Fig 1: Constellation Diagrams of BASK, BFSK, and BPSK [↗]



BPSK Modulation:

Transmits one of two signals: +√Eb​ or -√Eb, where Eb​ is the energy per bit.

These signals represent binary 0 and 1.

AWGN Channel:

The channel adds Gaussian noise with zero mean and variance N0/2 (where N0​ is the noise power spectral density).

Receiver Decision:

The receiver decides if the received signal is closer to +√Eb​ (for bit 0) or -√Eb​ (for bit 1).


Bit Error Rate (BER)

The probability of error (BER) for BPSK is given by a function called the Q-function. The Q-function Q(x) measures the tail probability of the normal distribution, i.e., the probability that a Gaussian random variable exceeds a certain value x. 

Understanding the Q-function:

The Q-function, Q(x), gives the probability that a standard normal (Gaussian) random variable exceeds x.

In the above context, he Q-function gives the probability that noise pushes the received signal across the wrong decision boundary, resulting in a bit error.

For the BPSK case, suppose we map the binary bits '0' and '1' to +1 and -1, respectively. If we transmit binary bit '0' (mapped to +1), but additive AWGN noise causes the received signal to fall below 0 (i.e., 1+noise<01 + \text{noise} < 0, where the threshold is 0), the receiver wrongly detects it as bit '1'. Similarly, if we transmit bit '1' (mapped to -1), but noise makes the received signal exceed 0 (i.e., 1+noise>0-1 + \text{noise} > 0), the receiver incorrectly detects it as bit '0'. Therefore, we need to find the probability of error, which corresponds to the probability that noise exceeds a certain value. In this case, the noise standard deviation is given by σ=N02\sigma = \sqrt{\frac{N_0}{2}}assuming the signal power is 1, the noise power is N02\frac{N_0}{2}, and the SNR is 1σ2\frac{1}{\sigma^2}.

Calculate the Probability of Error using Q-function

In either case, the noise is Gaussian with mean = 0 and variance = N0/2.
The probability of noise exceeding ±1 can be calculated with the Q-function:

Pb = Q(1/σ)

Where:

σ = √(N0/2)

So:

Pb = Q(1/√(N0/2)) = Q(√(2/N0))

Since:

SNR = Eb/N0

We get:

Pb = Q(√(2 × SNR)) 
or,  Pb = Q(√(2Eb/N0))

Formula for BER:

BER=Q(√(2Eb/N0))

Here:

Eb/N0​ is the energy per bit to noise power spectral density ratio, also known as the bit SNR.

Simplified Steps:

Calculate the SNR:

γb=Eb/N0

Find the Q-function Value:

BER=Q(√(2γb)​)
 

Intuition

For High SNR (γb​ is large):

The argument of the Q-function √(2γb)​ ​becomes large.

Q(x) for large x is small, meaning fewer errors.

Result: BER is low.

For Low SNR (γb​ is small):

The argument of the Q-function √(2γb) is small.

Q(x) for small x is larger, meaning more errors.

Result: BER is higher.

Approximation for High SNR

For large SNR values, the BER can be approximated using the complementary error function (erfc):

Q(x)≈1/2erfc(x/√(2))

Thus,

BER≈1/2erfc(√(γb))


So, BER Formula for BPSK in AWGN is:

BER=Q(√2Eb/N0) 

Higher SNR leads to lower BER, meaning better performance and fewer errors.
 

Copy the MATLAB code for theoretical BER vs SNR for  BPSK


Output




Figure: Theoretical BER vs SNR for BPSK


Also read about


People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

MATLAB code for MSK

 Copy the MATLAB Code from here % The code is developed by SalimWireless.com clc; clear; close all; % Define a bit sequence bitSeq = [0, 1, 0, 0, 1, 1, 1, 0, 0, 1]; % Perform MSK modulation [modSignal, timeVec] = modulateMSK(bitSeq, 10, 10, 10000); % Plot the modulated signal subplot(2,1,1); samples = 1:numel(bitSeq); stem(samples, bitSeq); title('Original message signal'); xlabel('Time (s)'); ylabel('Amplitude'); % Plot the modulated signal subplot(2,1,2); samples = 1:10000; plot(samples / 10000, modSignal(1:10000)); title('MSK modulated signal'); xlabel('Time (s)'); ylabel('Amplitude'); % Perform MSK demodulation demodBits = demodMSK(modSignal, 10, 10, 10000); % Function to perform MSK modulation function [signal, timeVec] = modulateMSK(bits, carrierFreq, baudRate, sampleFreq) % Converts a binary bit sequence into an MSK-modulated signal % Inputs: % bits - Binary input sequence % carrierFreq - Carri...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Simulator for m-ary QAM and m-ary PSK 🧮 MATLAB Codes 📚 Further Reading Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance,...

Constellation Diagrams of ASK, PSK, and FSK

BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams SNR (dB): 15 Add AWGN Noise Modulation Type BPSK BFSK ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

BER performance of QPSK with BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc

   Compare the BER performance of QPSK with other modulation schemes (e.g.,  BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc) under similar conditions. MATLAB Code clear all; close all; % Set parameters for QAM snr_dB = -20:2:20; % SNR values in dB qam_orders = [4, 16, 64, 256]; % QAM modulation orders % Loop through each QAM order and calculate theoretical BER figure; for qam_order = qam_orders     % Calculate theoretical BER using berawgn for QAM     ber_qam = berawgn(snr_dB, 'qam', qam_order);     % Plot the results for QAM     semilogy(snr_dB, ber_qam, 'o-', 'DisplayName', sprintf('%d-QAM', qam_order));     hold on; end % Set parameters for QPSK EbNoVec_qpsk = (-20:20)'; % Eb/No range for QPSK SNRlin_qpsk = 10.^(EbNoVec_qpsk/10); % SNR linear values for QPSK % Calculate the theoretical BER for QPSK using the provided formula ber_qpsk_theo = 2*qfunc(sqrt(2*SNRlin_qpsk)); % Plot the results for QPSK s...

Theoretical and simulated BER vs. SNR for ASK, FSK, and PSK

  BER vs. SNR denotes how many bits in error are received in a communication process for a particular Signal-to-noise (SNR) ratio. In most cases, SNR is measured in decibel (dB). For a typical communication system, a signal is often affected by two types of noises 1. Additive White Gaussian Noise (AWGN) 2. Rayleigh Fading In the case of additive white Gaussian noise (AWGN), random magnitude is added to the transmitted signal. On the other hand, Rayleigh fading (due to multipath) attenuates the different frequency components of a signal differently. A good signal-to-noise ratio tries to mitigate the effect of noise.  Calculate BER for Binary ASK Modulation The theoretical BER for binary ASK (BASK) in an AWGN channel is given by: BER  = (1/2) * erfc(0.5 * sqrt(SNR_ask));   Enter SNR (dB): Calculate BER BER vs. SNR curves for ASK, FSK, and PSK Calculate BER for Binary FSK Modulation The theoretical BER for binary FSK (BFSK) in a...