Skip to main content

What are Precoding and Combining Weights / Matrices in a MIMO Beamforming System


Configuration of Single-User Digital Pre-coder for Millimeter-Wave Massive MIMO System
Configuration of single-user digital precoder for millimeter-wave massive MIMO system

Precoding and combining are two excellent ways to send and receive signals over a multi-antenna communication process, respectively (i.e., MIMO antenna communication). The channel matrix is the basis of both the precoding and combining matrices. Precoding matrices are typically used on the transmitter side and combining matrices on the receiving side. The two matrices allow us to generate multiple simultaneous data streams between the transmitter and receiver. The nature of the data streams is also orthogonal, which helps decrease or cancel (theoretically) interference between any two data streams.

For a MIMO system, the channel matrix can be effectively **diagonalized through techniques like Singular Value Decomposition (SVD)**. This process transforms the complex multi-path channel into an equivalent set of independent sub-channels. Let's consider a general channel matrix H:

      
        H =
        2   0   2
        0   1   2
        0   1   0
      
    

(H = Channel Matrix, in a realistic scenario, H would typically be filled with non-zero complex numbers representing channel gains between transmit and receive antennas)

For a typical wireless communication system, the signal equation for a single stream is:

      
        y = h * x + n
      
    

However, for a multi-antenna MIMO system, this becomes a matrix equation where y, x, and n are vectors:

      
        y = H * x + n
      
    

When appropriate precoding and combining matrices are applied, the effective channel becomes diagonal. Let the effective diagonal channel be D:

      
        D =
        d11   0    0
        0     d22  0
        0     0    d33
      
    

Now, the signal equation for the received data streams, after combining, can be viewed as:

      
        y_eff = D * x_tx + n_eff
      
    

Where y_eff, x_tx, and n_eff are the effective received signals, transmitted symbols, and noise vectors, respectively, after applying precoding and combining.

This makes it much simpler to retrieve all independent data streams sent from the transmitter (TX):

      
        y_eff1 = d11 * x_tx1 + n_eff1
        y_eff2 = d22 * x_tx2 + n_eff2
        y_eff3 = d33 * x_tx3 + n_eff3
      
    

If the combining matrix is W and the precoding matrix is F, then the relationship illustrating the diagonalization of the channel can be expressed as:

      
        W^H * H * F = D
      
    

This occurs when the precoding F matrix is applied on the TX side and the W matrix is applied (as a conjugate transpose or inverse, denoted by W^H) on the RX side.

Let's look at a simplified 2x2 example for clarity:
Assume a channel matrix H and ideal precoding F and combining W^H matrices are found such that:
H =

        
          1.0  0.5
          0.5  1.0
        
      
And through a process like SVD, we derive F and W^H that perfectly "diagonalize" this channel. For illustrative purposes, imagine the result is:
        
          W^H * H * F = D =
          1.5  0.0
          0.0  0.5
        
      
Here, d11 = 1.5 and d22 = 0.5. If we transmit two data streams, x_tx1 and x_tx2, the effective received signals will be approximately:
y_eff1 = 1.5 * x_tx1 + n_eff1
y_eff2 = 0.5 * x_tx2 + n_eff2
As you can see, the two data streams are now isolated and can be independently decoded without interference from each other, even though they passed through the original complex channel H.


Summary:

In an environment with many scatterers, modern wireless communication systems use spatial multiplexing to increase data flow within the system. To transmit multiple data streams over the channel, a set of precoding and combining weights is derived from the channel matrix (often via SVD). These weights transform the original channel into an equivalent set of independent sub-channels, allowing each data stream to be independently retrieved. Magnitude and phase terms are included in these weights, which are frequently utilized in digital communication.

 

Further Reading

[1] Optimal Precoding in MIMO using SVD

[2] Optimal Power Allocation in MIMO Transmission using SVD 

[3] Beamforming in MIMO 

[4] MIMO / Massive MIMO (Main Page) 

<< Previous Page

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

What is - 3dB Frequency Response? Applications ...

📘 Overview & Theory 📘 Application of -3dB Frequency Response 🧮 MATLAB Codes 🧮 Online Digital Filter Simulator 📚 Further Reading Filters What is -3dB Frequency Response?   Remember, for most passband filters, the magnitude response typically remains close to the peak value within the passband, varying by no more than 3 dB. This is a standard characteristic in filter design. The term '-3dB frequency response' indicates that power has decreased to 50% of its maximum or that signal voltage has reduced to 0.707 of its peak value. Specifically, The -3dB comes from either 10 Log (0.5) {in the case of power} or 20 Log (0.707) {in the case of amplitude} . Viewing the signal in the frequency domain is helpful. In electronic amplifiers, the -3 dB limit is commonly used to define the passband. It shows whether the signal remains approximately flat across the passband. For example, in pulse shapi...

Theoretical BER vs SNR for binary ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Codes 📚 Further Reading Theoretical BER vs SNR for Amplitude Shift Keying (ASK) The theoretical Bit Error Rate (BER) for binary ASK depends on how binary bits are mapped to signal amplitudes. For typical cases: If bits are mapped to 1 and -1, the BER is: BER = Q(√(2 × SNR)) If bits are mapped to 0 and 1, the BER becomes: BER = Q(√(SNR / 2)) Where: Q(x) is the Q-function: Q(x) = 0.5 × erfc(x / √2) SNR : Signal-to-Noise Ratio N₀ : Noise Power Spectral Density Understanding the Q-Function and BER for ASK Bit '0' transmits noise only Bit '1' transmits signal (1 + noise) Receiver decision threshold is 0.5 BER is given by: P b = Q(0.5 / σ) , where σ = √(N₀ / 2) Using SNR = (0.5)² / N₀, we get: BER = Q(√(SNR / 2)) Theoretical BER vs ...

Channel Impulse Response (CIR)

📘 Overview & Theory 📘 How CIR Affects the Signal 🧮 Online Channel Impulse Response Simulator 🧮 MATLAB Codes 📚 Further Reading What is the Channel Impulse Response (CIR)? The Channel Impulse Response (CIR) is a concept primarily used in the field of telecommunications and signal processing. It provides information about how a communication channel responds to an impulse signal. It describes the behavior of a communication channel in response to an impulse signal. In signal processing, an impulse signal has zero amplitude at all other times and amplitude ∞ at time 0 for the signal. Using a Dirac Delta function, we can approximate this. Fig: Dirac Delta Function The result of this calculation is that all frequencies are responded to equally by δ(t) . This is crucial since we never know which frequenci...

BER performance of QPSK with BPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM, etc

📘 Overview 📚 QPSK vs BPSK and QAM: A Comparison of Modulation Schemes in Wireless Communication 📚 Real-World Example 🧮 MATLAB Code 📚 Further Reading   QPSK provides twice the data rate compared to BPSK. However, the bit error rate (BER) is approximately the same as BPSK at low SNR values when gray coding is used. On the other hand, QPSK exhibits similar spectral efficiency to 4-QAM and 16-QAM under low SNR conditions. In very noisy channels, QPSK can sometimes achieve better spectral efficiency than 4-QAM or 16-QAM. In practical wireless communication scenarios, QPSK is commonly used along with QAM techniques, especially where adaptive modulation is applied. Modulation Bits/Symbol Points in Constellation Usage Notes BPSK 1 2 Very robust, used in weak signals QPSK 2 4 Balanced speed & reliability 4-QAM ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...