Skip to main content

What are Precoding and Combining Weights / Matrices in a MIMO Beamforming System


Configuration of Single-User Digital Pre-coder for Millimeter-Wave Massive MIMO System
Configuration of single-user digital precoder for millimeter-wave massive MIMO system

Precoding and combining are two excellent ways to send and receive signals over a multi-antenna communication process, respectively (i.e., MIMO antenna communication). The channel matrix is the basis of both the precoding and combining matrices. Precoding matrices are typically used on the transmitter side and combining matrices on the receiving side. The two matrices allow us to generate multiple simultaneous data streams between the transmitter and receiver. The nature of the data streams is also orthogonal, which helps decrease or cancel (theoretically) interference between any two data streams.

For a MIMO system, the channel matrix can be effectively **diagonalized through techniques like Singular Value Decomposition (SVD)**. This process transforms the complex multi-path channel into an equivalent set of independent sub-channels. Let's consider a general channel matrix H:

      
        H =
        2   0   2
        0   1   2
        0   1   0
      
    

(H = Channel Matrix, in a realistic scenario, H would typically be filled with non-zero complex numbers representing channel gains between transmit and receive antennas)

For a typical wireless communication system, the signal equation for a single stream is:

      
        y = h * x + n
      
    

However, for a multi-antenna MIMO system, this becomes a matrix equation where y, x, and n are vectors:

      
        y = H * x + n
      
    

When appropriate precoding and combining matrices are applied, the effective channel becomes diagonal. Let the effective diagonal channel be D:

      
        D =
        d11   0    0
        0     d22  0
        0     0    d33
      
    

Now, the signal equation for the received data streams, after combining, can be viewed as:

      
        y_eff = D * x_tx + n_eff
      
    

Where y_eff, x_tx, and n_eff are the effective received signals, transmitted symbols, and noise vectors, respectively, after applying precoding and combining.

This makes it much simpler to retrieve all independent data streams sent from the transmitter (TX):

      
        y_eff1 = d11 * x_tx1 + n_eff1
        y_eff2 = d22 * x_tx2 + n_eff2
        y_eff3 = d33 * x_tx3 + n_eff3
      
    

If the combining matrix is W and the precoding matrix is F, then the relationship illustrating the diagonalization of the channel can be expressed as:

      
        W^H * H * F = D
      
    

This occurs when the precoding F matrix is applied on the TX side and the W matrix is applied (as a conjugate transpose or inverse, denoted by W^H) on the RX side.

Let's look at a simplified 2x2 example for clarity:
Assume a channel matrix H and ideal precoding F and combining W^H matrices are found such that:
H =

        
          1.0  0.5
          0.5  1.0
        
      
And through a process like SVD, we derive F and W^H that perfectly "diagonalize" this channel. For illustrative purposes, imagine the result is:
        
          W^H * H * F = D =
          1.5  0.0
          0.0  0.5
        
      
Here, d11 = 1.5 and d22 = 0.5. If we transmit two data streams, x_tx1 and x_tx2, the effective received signals will be approximately:
y_eff1 = 1.5 * x_tx1 + n_eff1
y_eff2 = 0.5 * x_tx2 + n_eff2
As you can see, the two data streams are now isolated and can be independently decoded without interference from each other, even though they passed through the original complex channel H.


Summary:

In an environment with many scatterers, modern wireless communication systems use spatial multiplexing to increase data flow within the system. To transmit multiple data streams over the channel, a set of precoding and combining weights is derived from the channel matrix (often via SVD). These weights transform the original channel into an equivalent set of independent sub-channels, allowing each data stream to be independently retrieved. Magnitude and phase terms are included in these weights, which are frequently utilized in digital communication.

 

Further Reading

[1] Optimal Precoding in MIMO using SVD

[2] Optimal Power Allocation in MIMO Transmission using SVD 

[3] Beamforming in MIMO 

[4] MIMO / Massive MIMO (Main Page) 

<< Previous Page

People are good at skipping over material they already know!

View Related Topics to







Contact Us

Name

Email *

Message *

Popular Posts

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

Power Spectral Density Calculation Using FFT in MATLAB

📘 Overview 🧮 Steps to calculate the PSD of a signal 🧮 MATLAB Codes 📚 Further Reading Power spectral density (PSD) tells us how the power of a signal is distributed across different frequency components, whereas Fourier Magnitude gives you the amplitude (or strength) of each frequency component in the signal. Steps to calculate the PSD of a signal Firstly, calculate the first Fourier transform (FFT) of a signal Then, calculate the Fourier magnitude of the signal The power spectrum is the square of the Fourier magnitude To calculate power spectrum density (PSD), divide the power spectrum by the total number of samples and the frequency resolution. {Frequency resolution = (sampling frequency / total number of samples)} Sampling frequency (fs): The rate at which the continuous-time signal is sampled (in Hz). ...

FFT Magnitude and Phase Spectrum using MATLAB

📘 Overview & Theory 🧮 MATLAB Code 1 🧮 MATLAB Code 2 📚 Further Reading   MATLAB Code  % Developed by SalimWireless.Com clc; clear; close all; % Configuration parameters fs = 10000; % Sampling rate (Hz) t = 0:1/fs:1-1/fs; % Time vector creation % Signal definition x = sin(2 * pi * 100 * t) + cos(2 * pi * 1000 * t); % Calculate the Fourier Transform y = fft(x); z = fftshift(y); % Create frequency vector ly = length(y); f = (-ly/2:ly/2-1) / ly * fs; % Calculate phase while avoiding numerical precision issues tol = 1e-6; % Tolerance threshold for zeroing small values z(abs(z) < tol) = 0; phase = angle(z); % Plot the original Signal figure; subplot(3, 1, 1); plot(t, x, 'b'); xlabel('Time (s)'); ylabel('|y|'); title('Original Messge Signal'); grid on; % Plot the magnitude of the Fourier Transform subplot(3, 1, 2); stem(f, abs(z), 'b'); xlabel('Frequency (Hz)'); ylabel('|y|'); title('Magnitude o...

MATLAB Code for Rms Delay Spread

RMS delay spread is crucial when you need to know how much the signal is dispersed in time due to multipath propagation, the spread (variance) around the average. In high-data-rate systems like LTE, 5G, or Wi-Fi, even small time dispersions can cause ISI. RMS delay spread is directly related to the amount of ISI in such systems. RMS Delay Spread [↗] Delay Spread Calculator Enter delays (ns) separated by commas: Enter powers (dB) separated by commas: Calculate   The above calculator Converts Power to Linear Scale: It correctly converts the power values from decibels (dB) to a linear scale. Calculates Mean Delay: It accurately computes the mean excess delay, which is the first moment of the power delay profile. Calculates RMS Delay Spread: It correctly calculates the RMS delay spread, defined as the square root of the second central moment of the power delay profile.   MATLAB Code  clc...

Coherence Bandwidth and Coherence Time

🧮 Coherence Bandwidth 🧮 Coherence Time 🧮 MATLAB Code s 📚 Further Reading For Doppler Delay or Multi-path Delay Coherence time T coh ∝ 1 / v max (For slow fading, coherence time T coh is greater than the signaling interval.) Coherence bandwidth W coh ∝ 1 / Ï„ max (For frequency-flat fading, coherence bandwidth W coh is greater than the signaling bandwidth.) Where: T coh = coherence time W coh = coherence bandwidth v max = maximum Doppler frequency (or maximum Doppler shift) Ï„ max = maximum excess delay (maximum time delay spread) Notes: The notation v max −1 and Ï„ max −1 indicate inverse proportionality. Doppler spread refers to the range of frequency shifts caused by relative motion, determining T coh . Delay spread (or multipath delay spread) determines W coh . Frequency-flat fading occurs when W coh is greater than the signaling bandwidth. Coherence Bandwidth Coherence bandwidth is...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for Bit Error Rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. BER = (number of bits received in error) / (total number of tran...