Skip to main content

Present and Future Wireless Communication Systems


1. Overview of 5G:

Looking back in time, we can see that we have adopted a new evolution or G in each decade. We were first introduced to 4G technology in 2010. However, we now need to make some changes to our current network. We're looking for two things in particular: 1. A network that is extremely dense, and 2. Broadband connectivity through cellular networks. Around 2020, 5G technology was commercialized. By 2025, it is anticipated that extensive adaption will be achievable. [Read More about 5G]


2. Limitations of 4G LTE:

Previously, with 4G LTE, a single base station (BS) could connect hundreds of devices at once. In the current situation, we need to expand the capacity of our system. Because the amount of bandwidth needed by various devices is continually rising. Every decade, it grows by a factor of 1000. As a result, every ten years, an entirely new evolution of G is required. [Read More]


3. The reason of the increasing data demand:

The number of wireless devices is increasing every day, yet the internet-based services, such as self-driving cars, streaming ultra-high-definition video, andIoTsensors, need both high data rates and extremely low latency to function in real time. Between 2011 and 2022, mobile data traffic will increase at a compound annual growth rate of 46%. It would have reached 2.58 exabytes (EB) daily by 2022. Statistics show that by 2022, the amount of internet protocol (IP) traffic worldwide is expected to exceed 4.8 zettabytes (ZBs) annually.


4. High data rates and more connections are offered to users with 5G:

Thousands of devices per square kilometer are projected to be supported by 5G. We urgently require it since the number of internet-connected devices, IoTs, and PDAs is continuously expanding, necessitating a large amount of bandwidth to operate them. Because 5G employs extremely high frequency or millimeter wave, it is capable of doing so. Previously, we've seen bandwidth allotment of roughly 2GHz per channel in WI PAN applications employing the 60 GHz millimeter wave spectrum. In the case of a cellular 5G network, we will now ‎utilize‎ this millimeter wave spectrum. That is very incredible. We'll use massive MIMO to make better use of the spectrum resource because millimeter wave has a lot of promise for greater bandwidth. Massive MIMO is an excellent way to boost system capacity even more. Using those incredible core technologies, we've almost reached the Shannon limit in 5G communication.

Our economy will be greatly impacted by 5G. Automation may be seen in a variety of sectors and industries. Machine-to-machine communication, augmented reality (AR), and virtual reality will all be common in the future. We will be able to control machines from afar and in real time. For many years, internet-connected high-speed vehicles, such as bullet trains, have been a major source of concern. Everything is feasible thanks to the ultra-low latency of the 5G millimeter wave spectrum. Communication latency will be decreased to 1 ms in 5G, compared to 40 ms in 4G.

Although 5G has a lot of potential, it also has several drawbacks, such as a complex channel model (sparse channel matrix), high propagation path loss, and so on. We've talked about a lot of problems and potential remedies.


5. Upcoming Wireless Mobile Generations, Millimeter Wave Band, and Massive MIMO: 
 
We are consistently upgrading our cellular wireless network's generation(G in telecom) and the IEEE body is releasing new WLAN technology, all to satisfy the demand for high data traffic from various internet-connected devices. As a result, we're moving to 5G, The essential technology for 5G connectivity is the millimeter wave (mmWave) band. The frequency range for mm-Wave is 30 to 300 GHz. To address the rising demand for data traffic on a worldwide scale, other spectrum bands need to be investigated. The millimeter wave band with massive MIMO antenna allows for a directed and narrow beam, which boosts the received signal power to an adequate level. Wi-Max, and other technologies to give greater connectivity to the fast-growing number of internet-connected devices. The fundamental goal of upgrading communication systems or the evolution of G is to offer enough bandwidth for all devices to connect with BSs seamlessly (due to the large amount of bandwidth available in the mm-wave band,Ultra-Wide Band (UWB),or microwave link communication) as well as to improve bandwidth efficiency (by applying new modulation techniques or designing antenna more properly for those systems, etc.).

The maximum bandwidth of the LTE cellular system, which operates at a sub-6 GHz operating frequency, is 200 MHz. However, WPAN, which operates in the 60 GHz unsilenced millimeter wave range, can give each channel a bandwidth of 2 GHz. The ITU classifies the millimeter wave band, which spans frequencies from 30 to 300 GHz, as extremely high frequency (or EHF). It is referred to as a millimeter wave since its wavelength varies from 1 millimeter to 10 millimeter. By providing high data rate wireless communication, where traffic from mobile and wireless devices will account for 71% of overall IP traffic, millimeter wave with massive MIMO will be crucial in meeting these demands.

N.B. We don't spam. Various posts about modern wireless communication systems, WLAN, 5G, IoTs, MIMO technology, Web design, programming, and other topics are published here. Don't forget tosubscribefor our newsletter.


Also read about

[1] 1G to 5G Technology - Evolution ofMobile Wireless Generations
[2] Important Wireless Communication Terms




People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

๐Ÿ“˜ Overview of BER and SNR ๐Ÿงฎ Simulator for m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance,...

Constellation Diagrams of ASK, PSK, and FSK

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator for constellation diagrams of ASK, FSK, and PSK ๐Ÿงฎ Theory ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams SNR (dB): 15 Add A...

ASK, FSK, and PSK

๐Ÿ“˜ Overview ๐Ÿ“˜ Amplitude Shift Keying (ASK) ๐Ÿ“˜ Frequency Shift Keying (FSK) ๐Ÿ“˜ Phase Shift Keying (PSK) ๐Ÿ“˜ Which of the modulation techniques—ASK, FSK, or PSK—can achieve higher bit rates? ๐Ÿงฎ MATLAB Codes ๐Ÿ“˜ Simulator for binary ASK, FSK, and PSK Modulation ๐Ÿ“š Further Reading   ASK or OFF ON Keying Ask is a simple (less complex)  Digital Modulation Scheme  where we vary the  modulation  signal's amplitude or voltage by the message signal's amplitude or voltage. We select two levels (two different voltage levels) for transmitting modulated message signals for the exam. And for example, we mapped the signal as two-level  "+5 Volt"  (which is the upper level) and another level,  "0 Volt,"  which is considered as the lower level. Whenever we need to transmit binary bit  "1,"  then the transmitter transmits a signal of  "+5 Volts,"  and when we need to send bit  "0,"  t...

RMS Delay Spread, Excess Delay Spread and Multi-path ...

๐Ÿ“˜ Overview ๐Ÿงฎ Multipath Components or MPCs ๐Ÿงฎ Excess Delay spread ๐Ÿงฎ Power delay Profile ๐Ÿงฎ RMS Delay Spread ๐Ÿงฎ Simulator for Calculating RMS Delay Spread ๐Ÿงฎ Why is there significant multipath in the case of very high frequencies? ๐Ÿงฎ Why RMS Delay Spread is essential for wireless communication? ๐Ÿงฎ Why the Power Delay Profile is essential? ๐Ÿงฎ MATLAB Codes ๐Ÿ“š Further Reading Signal Processing RMS Delay Spread, Excess Delay Spread, and Multipath... RMS Delay Spread, Excess Delay Spread, and Multipath (MPCs) The fundamental distinction between wireless and wired connections is that in wireless connections signal reaches at receiver thru multipath signal propagation rather than directed transmission like co-axial cable. Wireless Communication has no set communication path between the transmitter and the receiver. The line of sight path, also known as the LOS path, is the shortest and most direc...

Comparisons among ASK, PSK, and FSK | And the definitions of each

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator ๐Ÿงฎ Noise Sensitivity, Bandwidth, Complexity, etc. ๐Ÿงฎ MATLAB Codes ๐Ÿงฎ Some Questions and Answers ๐Ÿ“š Further Reading Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK   Simulator for Calculating Bandwidth of ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second. Both baud rate and bit rate are same for binary ASK, FSK, and PSK. Select Modulation Type: ASK FSK PSK Baud Rate or Bit Rate (bps): Frequency Deviation (Hz) for FSK: Calculate Bandwidth Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its r...

MATLAB Code for Pulse Amplitude Modulation (PAM) and Demodulation

๐Ÿ“˜ Overview & Theory ๐Ÿงฎ MATLAB Code 1 ๐Ÿงฎ MATLAB Code 2 ๐Ÿงฎ MATLAB Code for Pulse Amplitude Modulation and Demodulation of Digital data ๐Ÿงฎ Other Pulse Modulation Techniques (e.g., PWM, PPM, DM, and PCM) ๐Ÿ“š Further Reading   Pulse Amplitude Modulation (PAM) & Demodulation MATLAB Script clc; clear all; close all; fm= 10; % frequency of the message signal fc= 100; % frequency of the carrier signal fs=1000*fm; % (=100KHz) sampling frequency (where 1000 is the upsampling factor) t=0:1/fs:1; % sampling rate of (1/fs = 100 kHz) m=1*cos(2*pi*fm*t); % Message signal with period 2*pi*fm (sinusoidal wave signal) c=0.5*square(2*pi*fc*t)+0.5; % square wave with period 2*pi*fc s=m.*c; % modulated signal (multiplication of element by element) subplot(4,1,1); plot(t,m); title('Message signal'); xlabel ('Time'); ylabel('Amplitude'); subplot(4,1,2); plot(t,c); title('Carrier signal'); xlabel('Time'); ylabel('Amplitu...

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2024] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

๐Ÿ“˜ Overview ๐Ÿงฎ Simulator for m-ary QAM and m-ary PSK ๐Ÿงฎ MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together ๐Ÿงฎ MATLAB Code for M-ary QAM ๐Ÿงฎ MATLAB Code for M-ary PSK ๐Ÿ“š Further Reading   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear; close all; % Parameters num_symbols = 1e5; % Number of symbols snr_db = -20:2:20; % Range of SNR values in dB % PSK and QAM orders to be tested psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; % Initialize BER arrays ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); % BER calculation for each PSK order and SNR value for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) % Generate random symbols ...