Skip to main content
Home Wireless Communication Modulation MATLAB Beamforming Project Ideas MIMO Filters Computer Networks

Present and Future Wireless Communication Systems


1. Overview of 5G:

Looking back in time, we can see that we have adopted a new evolution or G in each decade. We were first introduced to 4G technology in 2010. However, we now need to make some changes to our current network. We're looking for two things in particular: 1. A network that is extremely dense, and 2. Broadband connectivity through cellular networks. Around 2020, 5G technology was commercialized. By 2025, it is anticipated that extensive adaption will be achievable. [Read More about 5G]


2. Limitations of 4G LTE:

Previously, with 4G LTE, a single base station (BS) could connect hundreds of devices at once. In the current situation, we need to expand the capacity of our system. Because the amount of bandwidth needed by various devices is continually rising. Every decade, it grows by a factor of 1000. As a result, every ten years, an entirely new evolution of G is required. [Read More]


3. The reason of the increasing data demand:

The number of wireless devices is increasing every day, yet the internet-based services, such as self-driving cars, streaming ultra-high-definition video, andIoTsensors, need both high data rates and extremely low latency to function in real time. Between 2011 and 2022, mobile data traffic will increase at a compound annual growth rate of 46%. It would have reached 2.58 exabytes (EB) daily by 2022. Statistics show that by 2022, the amount of internet protocol (IP) traffic worldwide is expected to exceed 4.8 zettabytes (ZBs) annually.


4. High data rates and more connections are offered to users with 5G:

Thousands of devices per square kilometer are projected to be supported by 5G. We urgently require it since the number of internet-connected devices, IoTs, and PDAs is continuously expanding, necessitating a large amount of bandwidth to operate them. Because 5G employs extremely high frequency or millimeter wave, it is capable of doing so. Previously, we've seen bandwidth allotment of roughly 2GHz per channel in WI PAN applications employing the 60 GHz millimeter wave spectrum. In the case of a cellular 5G network, we will now ‎utilize‎ this millimeter wave spectrum. That is very incredible. We'll use massive MIMO to make better use of the spectrum resource because millimeter wave has a lot of promise for greater bandwidth. Massive MIMO is an excellent way to boost system capacity even more. Using those incredible core technologies, we've almost reached the Shannon limit in 5G communication.

Our economy will be greatly impacted by 5G. Automation may be seen in a variety of sectors and industries. Machine-to-machine communication, augmented reality (AR), and virtual reality will all be common in the future. We will be able to control machines from afar and in real time. For many years, internet-connected high-speed vehicles, such as bullet trains, have been a major source of concern. Everything is feasible thanks to the ultra-low latency of the 5G millimeter wave spectrum. Communication latency will be decreased to 1 ms in 5G, compared to 40 ms in 4G.

Although 5G has a lot of potential, it also has several drawbacks, such as a complex channel model (sparse channel matrix), high propagation path loss, and so on. We've talked about a lot of problems and potential remedies.


5. Upcoming Wireless Mobile Generations, Millimeter Wave Band, and Massive MIMO: 
 
We are consistently upgrading our cellular wireless network's generation(G in telecom) and the IEEE body is releasing new WLAN technology, all to satisfy the demand for high data traffic from various internet-connected devices. As a result, we're moving to 5G, The essential technology for 5G connectivity is the millimeter wave (mmWave) band. The frequency range for mm-Wave is 30 to 300 GHz. To address the rising demand for data traffic on a worldwide scale, other spectrum bands need to be investigated. The millimeter wave band with massive MIMO antenna allows for a directed and narrow beam, which boosts the received signal power to an adequate level. Wi-Max, and other technologies to give greater connectivity to the fast-growing number of internet-connected devices. The fundamental goal of upgrading communication systems or the evolution of G is to offer enough bandwidth for all devices to connect with BSs seamlessly (due to the large amount of bandwidth available in the mm-wave band,Ultra-Wide Band (UWB),or microwave link communication) as well as to improve bandwidth efficiency (by applying new modulation techniques or designing antenna more properly for those systems, etc.).

The maximum bandwidth of the LTE cellular system, which operates at a sub-6 GHz operating frequency, is 200 MHz. However, WPAN, which operates in the 60 GHz unsilenced millimeter wave range, can give each channel a bandwidth of 2 GHz. The ITU classifies the millimeter wave band, which spans frequencies from 30 to 300 GHz, as extremely high frequency (or EHF). It is referred to as a millimeter wave since its wavelength varies from 1 millimeter to 10 millimeter. By providing high data rate wireless communication, where traffic from mobile and wireless devices will account for 71% of overall IP traffic, millimeter wave with massive MIMO will be crucial in meeting these demands.

N.B. We don't spam. Various posts about modern wireless communication systems, WLAN, 5G, IoTs, MIMO technology, Web design, programming, and other topics are published here. Don't forget tosubscribefor our newsletter.


Also read about

[1] 1G to 5G Technology - Evolution ofMobile Wireless Generations
[2] Important Wireless Communication Terms




People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK ASK or OFF ON Keying Ask is a simple (less complex) Digital Modulation Scheme where we vary the modulation signal's amplitude or voltage by the message signal's amplitude or voltage. We select two levels (two different voltage levels) for transmitting modulated message signals for the exam. And for example, we mapped the signal as two-level  "+5 Volt"  (which is the upper level) and another level,  "0 Volt,"  which is considered as the lower level. Whenever we need to transmit binary bit  "1,"  then the transmitter transmits a signal of  "+5 Volts,"  and when we need to send bit  "0,"  then it transmits no power. But the receiver is intelligent enough to deflect whether you've sent binary bit  "1"  or  "0

UGC NET Electronic Science Previous Year Question Papers

Home / Engineering & Other Exams / UGC NET 2022: Previous Year Question Papers ...   NET | GATE | ESE | UGC-NET (Electronics Science, Subject code: 88 ) UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2023] UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2022]  UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [June 2022]   UGC Net Electronic Science Questions Paper With Answer Key Download Pdf [December 2021] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2020] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2019] UGC Net Electronic Science Questions With Answer Key Download Pdf [June 2019] UGC Net Electronic Science Questions With Answer Key Download Pdf [December 2018] UGC Net Electronic Science Questions With Answer Key Download Pdf [July 2018] UG

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... 1. What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   2. What is Signal to Noise Ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the signal power is twice as

Constellation Diagrams of ASK, PSK, and FSK

Modulation ASK, FSK & PSK Constellation This article will primarily discuss constellation diagrams, as well as what constellation diagrams tell us and the significance of constellation diagrams. Constellation diagrams can often demonstrate how the amplitude and phase of signals or symbols differ. These two characteristics lessen the interference between two signals or symbols. Figure 1: Constellation diagrams of ASK, PSK, and FSK The constellation points for ASK, PSK, and FSK [↗] are located in a different pattern, and the distances between the constellation points vary. According to the above diagram, the distance between ASK constellation points is (√Eb -0) = √Eb (where Eb stands for energy per bit). From the above figure, you can also see the distances between constellation points for PSK and FSK are 2√Eb and √(2Eb), respectively. In a constellation diagram, if the distance between signaling points is less, then the probability

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...   MATLAB Script for  BER vs. SNR for M-QAM, M-PSK, QPSk, BPSK %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clc; clear all; close all; EbN0=-4:1:24; % Signal to Noise Ratio per Bit (in dB) EbN0ratio=10.^(EbN0/10); % Converted into ratio colors={'k-*','r-h','g-o','c-s','m-s','y-*','k-p','b:s','m:d','g:p'}; index=1; %BPSK BPSK_BER = 0.5*erfc(sqrt(EbN0ratio)); plotHandle=plot(EbN0,log10(BPSK_BER),char(colors(index))); set(plotHandle,'LineWidth',1.7); hold on; index=index+1; %M-PSK m=2:1:5; M=2.^m; for i=M, k=log2(i); PSK_BER = 1/k*erfc(sqrt(EbN0ratio*k)*sin(pi/i)); plotHandle=plot

MATLAB Code for ASK, FSK, and PSK

ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for Amplitude Shift Keying (ASK) % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration fc = 10; % Carrier frequency N = 10; % Number of bits % Generate carrier signal t = 0:Tb/100:1; carrier_signal = sqrt(2/Tb) * sin(2*pi*fc*t); % Generate message signal rng(10); % Set random seed for reproducibility binary_data = rand(1, N); % Generate random binary data t_start = 0; t_end = Tb; for i = 1:N t = [t_start:0.01:t_end]; % Generate message signal if binary_data(i) > 0.5 binary_data(i) = 1; message_signal = ones(1, length(t)); else binary_data(i) = 0; message_signal = zeros(1, length(t)); end % Store message signal message(i,:) = message_signal; % Modulate message with carrier

MATLAB Codes for Various types of beamforming | Beam Steering, Digital...

Beamforming Techniques MATLAB Codes for Beamforming... The mathematical [↗] and theoretical aspects of beamforming [↗] have already been covered. We'll talk about coding in MATLAB in this tutorial so that you may generate results for different beamforming approaches. Let's go right to the content of the article. In analog beamforming, certain codebooks are employed on the TX and RX sides to select the best beam pairs. Because of their beamforming gains, communication created through the strongest beams from both the TX and RX side enhances spectrum efficiency. Additionally, beamforming gain directly impacts SNR improvement. Wireless communication system capacity = bandwidth*log2(1+SNR) bits/s. Thus, the capacity or overall throughput of the system increases. MATLAB Script %Written by Salim Wireless %Visit www.salimwireless.com for study materials on wireless communication %or, if you want to learn how to code in MATLAB clear all;