Skip to main content

Present and Future Wireless Communication Systems


1. Overview of 5G:

Looking back in time, we can see that we have adopted a new evolution or G in each decade. We were first introduced to 4G technology in 2010. However, we now need to make some changes to our current network. We're looking for two things in particular: 1. A network that is extremely dense, and 2. Broadband connectivity through cellular networks. Around 2020, 5G technology was commercialized. By 2025, it is anticipated that extensive adaption will be achievable. [Read More about 5G]


2. Limitations of 4G LTE:

Previously, with 4G LTE, a single base station (BS) could connect hundreds of devices at once. In the current situation, we need to expand the capacity of our system. Because the amount of bandwidth needed by various devices is continually rising. Every decade, it grows by a factor of 1000. As a result, every ten years, an entirely new evolution of G is required. [Read More]


3. The reason of the increasing data demand:

The number of wireless devices is increasing every day, yet the internet-based services, such as self-driving cars, streaming ultra-high-definition video, andIoTsensors, need both high data rates and extremely low latency to function in real time. Between 2011 and 2022, mobile data traffic will increase at a compound annual growth rate of 46%. It would have reached 2.58 exabytes (EB) daily by 2022. Statistics show that by 2022, the amount of internet protocol (IP) traffic worldwide is expected to exceed 4.8 zettabytes (ZBs) annually.


4. High data rates and more connections are offered to users with 5G:

Thousands of devices per square kilometer are projected to be supported by 5G. We urgently require it since the number of internet-connected devices, IoTs, and PDAs is continuously expanding, necessitating a large amount of bandwidth to operate them. Because 5G employs extremely high frequency or millimeter wave, it is capable of doing so. Previously, we've seen bandwidth allotment of roughly 2GHz per channel in WI PAN applications employing the 60 GHz millimeter wave spectrum. In the case of a cellular 5G network, we will now ‎utilize‎ this millimeter wave spectrum. That is very incredible. We'll use massive MIMO to make better use of the spectrum resource because millimeter wave has a lot of promise for greater bandwidth. Massive MIMO is an excellent way to boost system capacity even more. Using those incredible core technologies, we've almost reached the Shannon limit in 5G communication.

Our economy will be greatly impacted by 5G. Automation may be seen in a variety of sectors and industries. Machine-to-machine communication, augmented reality (AR), and virtual reality will all be common in the future. We will be able to control machines from afar and in real time. For many years, internet-connected high-speed vehicles, such as bullet trains, have been a major source of concern. Everything is feasible thanks to the ultra-low latency of the 5G millimeter wave spectrum. Communication latency will be decreased to 1 ms in 5G, compared to 40 ms in 4G.

Although 5G has a lot of potential, it also has several drawbacks, such as a complex channel model (sparse channel matrix), high propagation path loss, and so on. We've talked about a lot of problems and potential remedies.


5. Upcoming Wireless Mobile Generations, Millimeter Wave Band, and Massive MIMO: 
 
We are consistently upgrading our cellular wireless network's generation(G in telecom) and the IEEE body is releasing new WLAN technology, all to satisfy the demand for high data traffic from various internet-connected devices. As a result, we're moving to 5G, The essential technology for 5G connectivity is the millimeter wave (mmWave) band. The frequency range for mm-Wave is 30 to 300 GHz. To address the rising demand for data traffic on a worldwide scale, other spectrum bands need to be investigated. The millimeter wave band with massive MIMO antenna allows for a directed and narrow beam, which boosts the received signal power to an adequate level. Wi-Max, and other technologies to give greater connectivity to the fast-growing number of internet-connected devices. The fundamental goal of upgrading communication systems or the evolution of G is to offer enough bandwidth for all devices to connect with BSs seamlessly (due to the large amount of bandwidth available in the mm-wave band,Ultra-Wide Band (UWB),or microwave link communication) as well as to improve bandwidth efficiency (by applying new modulation techniques or designing antenna more properly for those systems, etc.).

The maximum bandwidth of the LTE cellular system, which operates at a sub-6 GHz operating frequency, is 200 MHz. However, WPAN, which operates in the 60 GHz unsilenced millimeter wave range, can give each channel a bandwidth of 2 GHz. The ITU classifies the millimeter wave band, which spans frequencies from 30 to 300 GHz, as extremely high frequency (or EHF). It is referred to as a millimeter wave since its wavelength varies from 1 millimeter to 10 millimeter. By providing high data rate wireless communication, where traffic from mobile and wireless devices will account for 71% of overall IP traffic, millimeter wave with massive MIMO will be crucial in meeting these demands.

N.B. We don't spam. Various posts about modern wireless communication systems, WLAN, 5G, IoTs, MIMO technology, Web design, programming, and other topics are published here. Don't forget tosubscribefor our newsletter.


Also read about

[1] 1G to 5G Technology - Evolution ofMobile Wireless Generations
[2] Important Wireless Communication Terms




People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

s

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

Comparisons among ASK, PSK, and FSK | And the definitions of each

📘 Comparisons among ASK, FSK, and PSK 🧮 Online Simulator for calculating Bandwidth of ASK, FSK, and PSK 🧮 MATLAB Code for BER vs. SNR Analysis of ASK, FSK, and PSK 📚 Further Reading 📂 View Other Topics on Comparisons among ASK, PSK, and FSK ... 🧮 Comparisons of Noise Sensitivity, Bandwidth, Complexity, etc. 🧮 MATLAB Code for Constellation Diagrams of ASK, FSK, and PSK 🧮 Online Simulator for ASK, FSK, and PSK Generation 🧮 Online Simulator for ASK, FSK, and PSK Constellation 🧮 Some Questions and Answers Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK, FSK, and PSK Parameters ASK FSK PSK Variable Characteristics Amplitude Frequency ...

MATLAB Code for ASK, FSK, and PSK

📘 Overview & Theory 🧮 MATLAB Code for ASK 🧮 MATLAB Code for FSK 🧮 MATLAB Code for PSK 🧮 Simulator for binary ASK, FSK, and PSK Modulations 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Code MATLAB Code for ASK Modulation and Demodulation % The code is written by SalimWireless.Com % Clear previous data and plots clc; clear all; close all; % Parameters Tb = 1; % Bit duration (s) fc = 10; % Carrier frequency (Hz) N_bits = 10; % Number of bits Fs = 100 * fc; % Sampling frequency (ensure at least 2*fc, more for better representation) Ts = 1/Fs; % Sampling interval samples_per_bit = Fs * Tb; % Number of samples per bit duration % Generate random binary data rng(10); % Set random seed for reproducibility binary_data = randi([0, 1], 1, N_bits); % Generate random binary data (0 or 1) % Initialize arrays for continuous signals t_overall = 0:Ts:(N_bits...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

📘 Overview of BER and SNR 🧮 Online Simulator for BER calculation of m-ary QAM and m-ary PSK 🧮 MATLAB Code for BER calculation of M-ary QAM, M-ary PSK, QPSK, BPSK, ... 📚 Further Reading 📂 View Other Topics on M-ary QAM, M-ary PSK, QPSK ... 🧮 Online Simulator for Constellation Diagram of m-ary QAM 🧮 Online Simulator for Constellation Diagram of m-ary PSK 🧮 MATLAB Code for BER calculation of ASK, FSK, and PSK 🧮 MATLAB Code for BER calculation of Alamouti Scheme 🧮 Different approaches to calculate BER vs SNR What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR ...

Online Simulator for ASK, FSK, and PSK

Try our new Digital Signal Processing Simulator!   Start Simulator for binary ASK Modulation Message Bits (e.g. 1,0,1,0) Carrier Frequency (Hz) Sampling Frequency (Hz) Run Simulation Simulator for binary FSK Modulation Input Bits (e.g. 1,0,1,0) Freq for '1' (Hz) Freq for '0' (Hz) Sampling Rate (Hz) Visualize FSK Signal Simulator for BPSK Modulation ...

Simulation of ASK, FSK, and PSK using MATLAB Simulink

📘 Overview 🧮 How to use MATLAB Simulink 🧮 Simulation of ASK using MATLAB Simulink 🧮 Simulation of FSK using MATLAB Simulink 🧮 Simulation of PSK using MATLAB Simulink 🧮 Simulator for ASK, FSK, and PSK 🧮 Digital Signal Processing Simulator 📚 Further Reading ASK, FSK & PSK HomePage MATLAB Simulation Simulation of Amplitude Shift Keying (ASK) using MATLAB Simulink      In Simulink, we pick different components/elements from MATLAB Simulink Library. Then we connect the components and perform a particular operation.  Result A sine wave source, a pulse generator, a product block, a mux, and a scope are shown in the diagram above. The pulse generator generates the '1' and '0' bit sequences. Sine wave sources produce a specific amplitude and frequency. The scope displays the modulated signal as well as the original bit sequence created by the pulse generator. Mux is a tool for displaying b...

Constellation Diagrams of ASK, PSK, and FSK

📘 Overview of Energy per Bit (Eb / N0) 🧮 Online Simulator for constellation diagrams of ASK, FSK, and PSK 🧮 Theory behind Constellation Diagrams of ASK, FSK, and PSK 🧮 MATLAB Codes for Constellation Diagrams of ASK, FSK, and PSK 📚 Further Reading 📂 Other Topics on Constellation Diagrams of ASK, PSK, and FSK ... 🧮 Simulator for constellation diagrams of m-ary PSK 🧮 Simulator for constellation diagrams of m-ary QAM BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals...

MATLAB code for GMSK

📘 Overview & Theory 🧮 MATLAB Codes for GMSK 🧮 Online Simulator for GMSK 🧮 Simulation Results for GMSK 📚 Further Reading   Copy the MATLAB code from here  % The code is developed by SalimWireless.com clc; clear; close all; % Parameters samples_per_bit = 36; bit_duration = 1; num_bits = 20; sample_interval = bit_duration / samples_per_bit; time_vector = 0:sample_interval:(num_bits * bit_duration); time_vector(end) = []; % Generate and modulate binary data binary_data = randi([0, 1], 1, num_bits); modulated_bits = 2 * binary_data - 1; upsampled_signal = kron(modulated_bits, ones(1, samples_per_bit)); figure; plot(time_vector, upsampled_signal); title('Message Signal'); % Apply Gaussian filter filtered_signal = conv(GMSK_gaussian_filter1(bit_duration, samples_per_bit), upsampled_signal); filtered_signal = [filtered_signal, filtered_signal(end)]; figure; plot(filtered_signal); title('Filtered Signal'); % Integration ...

MATLAB code for BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ...

🧮 MATLAB Code for BPSK, M-ary PSK, and M-ary QAM Together 🧮 MATLAB Code for M-ary QAM 🧮 MATLAB Code for M-ary PSK 📚 Further Reading MATLAB Script for BER vs. SNR for M-QAM, M-PSK, QPSK, BPSK % Written by Salim Wireless clc; clear; close all; num_symbols = 1e5; snr_db = -20:2:20; psk_orders = [2, 4, 8, 16, 32]; qam_orders = [4, 16, 64, 256]; ber_psk_results = zeros(length(psk_orders), length(snr_db)); ber_qam_results = zeros(length(qam_orders), length(snr_db)); for i = 1:length(psk_orders) psk_order = psk_orders(i); for j = 1:length(snr_db) data_symbols = randi([0, psk_order-1], 1, num_symbols); modulated_signal = pskmod(data_symbols, psk_order, pi/psk_order); received_signal = awgn(modulated_signal, snr_db(j), 'measured'); demodulated_symbols = pskdemod(received_signal, psk_order, pi/psk_order); ber_psk_results(i, j) = sum(data_symbols ~= demodulated_symbols) / num_symbols; end end for ...