Skip to main content

Present and Future Wireless Communication Systems


1. Overview of 5G:

Looking back in time, we can see that we have adopted a new evolution or G in each decade. We were first introduced to 4G technology in 2010. However, we now need to make some changes to our current network. We're looking for two things in particular: 1. A network that is extremely dense, and 2. Broadband connectivity through cellular networks. Around 2020, 5G technology was commercialized. By 2025, it is anticipated that extensive adaption will be achievable. [Read More about 5G]


2. Limitations of 4G LTE:

Previously, with 4G LTE, a single base station (BS) could connect hundreds of devices at once. In the current situation, we need to expand the capacity of our system. Because the amount of bandwidth needed by various devices is continually rising. Every decade, it grows by a factor of 1000. As a result, every ten years, an entirely new evolution of G is required. [Read More]


3. The reason of the increasing data demand:

The number of wireless devices is increasing every day, yet the internet-based services, such as self-driving cars, streaming ultra-high-definition video, andIoTsensors, need both high data rates and extremely low latency to function in real time. Between 2011 and 2022, mobile data traffic will increase at a compound annual growth rate of 46%. It would have reached 2.58 exabytes (EB) daily by 2022. Statistics show that by 2022, the amount of internet protocol (IP) traffic worldwide is expected to exceed 4.8 zettabytes (ZBs) annually.


4. High data rates and more connections are offered to users with 5G:

Thousands of devices per square kilometer are projected to be supported by 5G. We urgently require it since the number of internet-connected devices, IoTs, and PDAs is continuously expanding, necessitating a large amount of bandwidth to operate them. Because 5G employs extremely high frequency or millimeter wave, it is capable of doing so. Previously, we've seen bandwidth allotment of roughly 2GHz per channel in WI PAN applications employing the 60 GHz millimeter wave spectrum. In the case of a cellular 5G network, we will now ‎utilize‎ this millimeter wave spectrum. That is very incredible. We'll use massive MIMO to make better use of the spectrum resource because millimeter wave has a lot of promise for greater bandwidth. Massive MIMO is an excellent way to boost system capacity even more. Using those incredible core technologies, we've almost reached the Shannon limit in 5G communication.

Our economy will be greatly impacted by 5G. Automation may be seen in a variety of sectors and industries. Machine-to-machine communication, augmented reality (AR), and virtual reality will all be common in the future. We will be able to control machines from afar and in real time. For many years, internet-connected high-speed vehicles, such as bullet trains, have been a major source of concern. Everything is feasible thanks to the ultra-low latency of the 5G millimeter wave spectrum. Communication latency will be decreased to 1 ms in 5G, compared to 40 ms in 4G.

Although 5G has a lot of potential, it also has several drawbacks, such as a complex channel model (sparse channel matrix), high propagation path loss, and so on. We've talked about a lot of problems and potential remedies.


5. Upcoming Wireless Mobile Generations, Millimeter Wave Band, and Massive MIMO: 
 
We are consistently upgrading our cellular wireless network's generation(G in telecom) and the IEEE body is releasing new WLAN technology, all to satisfy the demand for high data traffic from various internet-connected devices. As a result, we're moving to 5G, The essential technology for 5G connectivity is the millimeter wave (mmWave) band. The frequency range for mm-Wave is 30 to 300 GHz. To address the rising demand for data traffic on a worldwide scale, other spectrum bands need to be investigated. The millimeter wave band with massive MIMO antenna allows for a directed and narrow beam, which boosts the received signal power to an adequate level. Wi-Max, and other technologies to give greater connectivity to the fast-growing number of internet-connected devices. The fundamental goal of upgrading communication systems or the evolution of G is to offer enough bandwidth for all devices to connect with BSs seamlessly (due to the large amount of bandwidth available in the mm-wave band,Ultra-Wide Band (UWB),or microwave link communication) as well as to improve bandwidth efficiency (by applying new modulation techniques or designing antenna more properly for those systems, etc.).

The maximum bandwidth of the LTE cellular system, which operates at a sub-6 GHz operating frequency, is 200 MHz. However, WPAN, which operates in the 60 GHz unsilenced millimeter wave range, can give each channel a bandwidth of 2 GHz. The ITU classifies the millimeter wave band, which spans frequencies from 30 to 300 GHz, as extremely high frequency (or EHF). It is referred to as a millimeter wave since its wavelength varies from 1 millimeter to 10 millimeter. By providing high data rate wireless communication, where traffic from mobile and wireless devices will account for 71% of overall IP traffic, millimeter wave with massive MIMO will be crucial in meeting these demands.

N.B. We don't spam. Various posts about modern wireless communication systems, WLAN, 5G, IoTs, MIMO technology, Web design, programming, and other topics are published here. Don't forget tosubscribefor our newsletter.


Also read about

[1] 1G to 5G Technology - Evolution ofMobile Wireless Generations
[2] Important Wireless Communication Terms




People are good at skipping over material they already know!

View Related Topics to







Admin & Author: Salim

profile

  Website: www.salimwireless.com
  Interests: Signal Processing, Telecommunication, 5G Technology, Present & Future Wireless Technologies, Digital Signal Processing, Computer Networks, Millimeter Wave Band Channel, Web Development
  Seeking an opportunity in the Teaching or Electronics & Telecommunication domains.
  Possess M.Tech in Electronic Communication Systems.


Contact Us

Name

Email *

Message *

Popular Posts

MATLAB code for MSK

 Copy the MATLAB Code from here % The code is developed by SalimWireless.com clc; clear; close all; % Define a bit sequence bitSeq = [0, 1, 0, 0, 1, 1, 1, 0, 0, 1]; % Perform MSK modulation [modSignal, timeVec] = modulateMSK(bitSeq, 10, 10, 10000); % Plot the modulated signal subplot(2,1,1); samples = 1:numel(bitSeq); stem(samples, bitSeq); title('Original message signal'); xlabel('Time (s)'); ylabel('Amplitude'); % Plot the modulated signal subplot(2,1,2); samples = 1:10000; plot(samples / 10000, modSignal(1:10000)); title('MSK modulated signal'); xlabel('Time (s)'); ylabel('Amplitude'); % Perform MSK demodulation demodBits = demodMSK(modSignal, 10, 10, 10000); % Function to perform MSK modulation function [signal, timeVec] = modulateMSK(bits, carrierFreq, baudRate, sampleFreq) % Converts a binary bit sequence into an MSK-modulated signal % Inputs: % bits - Binary input sequence % carrierFreq - Carri...

BER vs SNR for M-ary QAM, M-ary PSK, QPSK, BPSK, ...

Modulation Constellation Diagrams BER vs. SNR BER vs SNR for M-QAM, M-PSK, QPSk, BPSK, ... What is Bit Error Rate (BER)? The abbreviation BER stands for bit error rate, which indicates how many corrupted bits are received (after the demodulation process) compared to the total number of bits sent in a communication process. It is defined as,  In mathematics, BER = (number of bits received in error / total number of transmitted bits)  On the other hand, SNR refers to the signal-to-noise power ratio. For ease of calculation, we commonly convert it to dB or decibels.   What is Signal the signal-to-noise ratio (SNR)? SNR = signal power/noise power (SNR is a ratio of signal power to noise power) SNR (in dB) = 10*log(signal power / noise power) [base 10] For instance, the SNR for a given communication system is 3dB. So, SNR (in ratio) = 10^{SNR (in dB) / 10} = 2 Therefore, in this instance, the s...

Constellation Diagrams of ASK, PSK, and FSK

BASK (Binary ASK) Modulation: Transmits one of two signals: 0 or -√Eb, where Eb​ is the energy per bit. These signals represent binary 0 and 1.    BFSK (Binary FSK) Modulation: Transmits one of two signals: +√Eb​ ( On the y-axis, the phase shift of 90 degrees with respect to the x-axis, which is also termed phase offset ) or √Eb (on x-axis), where Eb​ is the energy per bit. These signals represent binary 0 and 1.  BPSK (Binary PSK) Modulation: Transmits one of two signals: +√Eb​ or -√Eb (they differ by 180 degree phase shift), where Eb​ is the energy per bit. These signals represent binary 0 and 1.    Simulator for BASK, BPSK, and BFSK Constellation Diagrams SNR (dB): 15 Add AWGN Noise Modulation Type BPSK BFSK ...

Fundamentals of Channel Estimation

Channel Estimation Techniques Channel Estimation is an auto-regressive process that may be performed with a number of iterations. There are commonly three types of channel estimation approaches. 1. Pilot estimation  2. Blind estimation  3. Semi-blind estimation. For Channel Estimation,  CIR [↗] is used. The amplitudes of the impulses decrease over time and are not correlated. For example, y(n) = h(n) * x(n) + w(n) where y(n) is the received signal, x(n) is the sent signal, and w(n) is the additive white gaussian noise At the next stage, h(n+1) = a*h(n) + w(n) The channel coefficient will be modified as stated above at the subsequent stage. The scaling factor "a" determines the impulse's amplitude, whereas "h(n+1)" represents the channel coefficient at the following stage. Pilot Estimation Method To understand how a communication medium is currently behaving, a channel estimate is necessary. In order to monitor a channel's behavior in practice communication ...

Comparisons among ASK, PSK, and FSK | And the definitions of each

Modulation ASK, FSK & PSK Constellation MATLAB Simulink MATLAB Code Comparisons among ASK, PSK, and FSK    Comparisons among ASK, PSK, and FSK Comparison among ASK,  FSK, and PSK Performance Comparison: 1. Noise Sensitivity:    - ASK is the most sensitive to noise due to its reliance on amplitude variations.    - PSK is less sensitive to noise compared to ASK.    - FSK is relatively more robust against noise, making it suitable for noisy environments. 2. Bandwidth Efficiency:    - PSK is the most bandwidth-efficient, requiring less bandwidth than FSK for the same data rate.    - FSK requires wider bandwidth compared to PSK.    - ASK's bandwidth efficiency lies between FSK and PSK. Bandwidth Calculator for ASK, FSK, and PSK The baud rate represents the number of symbols transmitted per second Select Modulation Type: ASK...

Difference between AWGN and Rayleigh Fading

Wireless Signal Processing Gaussian and Rayleigh Distribution Difference between AWGN and Rayleigh Fading 1. Introduction Rayleigh fading coefficients and AWGN, or additive white gaussian noise [↗] , are two distinct factors that affect a wireless communication channel. In mathematics, we can express it in that way.  Fig: Rayleigh Fading due to multi-paths Let's explore wireless communication under two common noise scenarios: AWGN (Additive White Gaussian Noise) and Rayleigh fading. y = h*x + n ... (i) Symbol '*' represents convolution. The transmitted signal  x  is multiplied by the channel coefficient or channel impulse response (h)  in the equation above, and the symbol  "n"  stands for the white Gaussian noise that is added to the signal through any type of channel (here, it is a wireless channel or wireless medium). Due to multi-paths the channel impulse response (h) changes. And multi-paths cause Rayleigh fa...

Constellation Diagram of FSK in Detail

  Binary bits '0' and '1' can be mapped to 'j' and '1' to '1', respectively, for Baseband Binary Frequency Shift Keying (BFSK) . Signals are in phase here. These bits can be mapped into baseband representation for a number of uses, including power spectral density (PSD) calculations. For passband BFSK transmission, we can modulate signal 'j' with a lower carrier frequency and signal '1' with a higher carrier frequency while transmitting over a wireless channel. Let's assume we are transmitting carrier signal fc1 for the transmission of binary bit '1' and carrier signal fc2 for the transmission of binary bit '0'. Simulator for 2-FSK Constellation Diagram Simulator for 2-FSK Constellation Diagram SNR (dB): 15 Add AWGN Noise Run Simulation ...

Gaussian minimum shift keying (GMSK)

Dive into the fascinating world of GMSK modulation, where continuous phase modulation and spectral efficiency come together for robust communication systems! Core Process of GMSK Modulation Phase Accumulation (Integration of Filtered Signal) After applying Gaussian filtering to the Non-Return-to-Zero (NRZ) signal, we integrate the smoothed NRZ signal over time to produce a continuous phase signal: θ(t) = ∫ 0 t m filtered (Ï„) dÏ„ This integration is crucial for avoiding abrupt phase transitions, ensuring smooth and continuous phase changes. Phase Modulation The next step involves using the phase signal to modulate a high-frequency carrier wave: s(t) = cos(2Ï€f c t + θ(t)) Here, f c is the carrier frequency, and s(t) represents the continuous-phase modulated carrier wave. Quadrature Modulation (Optional) ...